
Introduction to the Java language
and Development Environment

By Marc-André Laverdière

Introduction to the Java language
and Development Environment

Complete reference and tutorials available
online at www.java.sun.com

Java is intended to be a multiplatform-
independent programming language.
However, different virtual machines on
different platforms can behave differently.

Introduction to the Java language
and Development Environment

Topics Covered Today:
• Java Language Syntax
• Classes & Inheritance in Java
• Exceptions & Exception Handling
• Java Language basic API
• System.* I/O
• Using Java from the command line
• JBuilder & SunOne Development Environments

Java Language Syntax

• Classes Only
• All Pointers, but Simple Memory

Management
• Integrated Declaration-Definition
• Structuring a program
• Syntax of control structures

Classes Only

• Java has been built close to initial object
concepts

• All in Java is based around classes
• Classes are organized within packages
• The general syntax is almost identical to

C/C++

All Pointers, but Simple Memory
Management

• (Almost) all variables in Java are pointers.
• This means that you must initialize all variables

that are not basic types.
• The keyword null represents a null pointer.
• The keyword new is used to create new instances

of a class
• Example:
String a; //This is just a pointer to a string, its value is null
String b = “” ; // this is an empty string
String c = new String(); //empty string, but built with the new operator

All Pointers, but Simple Memory
Management

• Rely on the garbage collector for memory
de-allocation.

• The garbage collector runs in a thread and
detects objects that are no longer in use and
destroys them. It is done implicitly.

Integrated Declaration-Definition

• Java classes and operations are defined directly.
• In C++:
Class a {
private:
int x;

public:
int function();

};
int a::function(){return x;}

• In Java:
Class a {
private int x;
public int function() {return x;}
}

Structuring a Program

• Java forces only one class per .java file
• Classes are structured within packages
• Packages are the equivalent of the header

files in C
• One of the classes will have a main function

Structuring a Program

Packages
• Define a class as part of a package:
package <packageName>;

• Using a package or a specific class
import java.lang.*; //import the whole java.lang package
import java.lang.String; //import the String class in java.lang

• Specifying that a class is public or private
public class a {…} //This class is accessible outside the package, and thus is part of the

package’s public interface
private class b {…}//This class is not accessible outside the package. Only classes within the

package can use it.

Structuring a Program

Main
• The main class will have this method:
public static void main(String[] args) {
//Things that Main does…
}

Syntax of Control Structures

• The syntax is meant to be identical to C/C++ syntax
• If Statement:
if (<condition>) {…}
else {…}

• Switch Statement:
switch (<identifier>) {
case <case>: …
break;
default: …
}

• While loop:
while (<condition>) {…}

• For Loop:
for (<initialize>; <check>; <incrementation>){…}

• Do while loop:
Do {…} while(<condition>)

Classes & Inheritance in Java

• Specifying Encapsulation
• Constructors & Destructors
• Direct Inheritance
• Abstract Classes
• Implementation Inheritance
• Polymorphism

Specifying Encapsulation

• All definitions within a function must be
precedented by its accessibility identifier.

• Private: Accessible internally only
• Protected: Accessible internally, inheritable
• Public: Accessible externally
public class A{ //example for a Singleton
protected A instance;
protected A() {…}
public A getInstance(){…}

}

Constructors & Destructors

• Constructors are specified by using the
same name as the class

• Destructors are specified by the finalize()
function, which is called by the garbage
collector. Use it for closing files and so on.

public class aBuffer{
protected byte[] buffer;
public aBuffer () { buffer = new byte[1024];}

…
protected void finalize(){
//not needed, really }

Direct Inheritance

• The direct inheritance is implemented by
using the extends keyword:

public class myString extends String{
public myString (){ //constructor overload

super(); // call the ancestor’s constructor
}

}

• If you want your class not to be derived
(and I don’t see why), use the final keyword

public final class <name> …

Abstract Classes

• Abstract classes are classes with abstract
methods.

• Abstract methods are methods with no
definition.

• Abstract methods need to be implemented
in derived classes that are not abstract.

Public abstract class A{
…
public abstract void someOperation();

}

Implementation Inheritance

• The implementation inheritance allows to
implement interface classes

• Not used very often

public interface myInterface …

public class threadProgram implements Runnable{
…
public void run(){…} //This method is defined in the interface and must be defined here

}

Polymorphism

• Members of the same class hierarchy can be
used polymorphically.

• All classes are implicitly derived from
Object.

• For example, a general-purpose class acting
on any class can use Object as parameters.

public void push_stack (Object to_push){…}

Exceptions & Exception handling

• Exception is a newer concept for error
handling.

• In C, the convention was to have all
functions return a negative value defined in
constants.

• This complexifies error handling and
increases coupling.

Exceptions & Exception handling

• Java defines a Exception class, as well as
many derived classes, such as IOException.

• You can define your own exceptions and
use them as a powerful tool for exception
handling

• You can also catch exceptions in order to
encapsulate error handling inside a package
and so on.

Exceptions & Exception handling

• It is possible to define a method as throwing
a certain type of exception

public void read() throws IOException{…}

• Java will then force us to use exception
handling in our program when calls to such
methods are indicated.

try { … } //This code is run, perhaps partially. If an exception arises, the rest of the try block
is not executed, and the catch code is run

catch (Exception e){ …} //The catch code is run whenever an exception is throwed
finally {…} // This code is run after the try or the catch block. It might need its own

try/catch sequence. The Finally block is optional.

Java Language Basic API

• Basic Data Types
• Constants
• Operators
• Arrays & Cloning
• Strings
• Vector
• Object
• Math

Java Language Basic API

• All the details on the API and all classes is
detailed on:
http://java.sun.com/j2se/1.3/docs/api/

• Today’s presentation merely summarizes a
some of the more important classes

Basic Data Types

• long:Big-endian 64-bit signed integer
• int: Big-endian 32-bit signed integer
• short: Big-endian 16-bit signed integer
• byte: Used in arrays, is a 8-bit signed integer
• float: 32-bit IEEE 754 floating-point
• double: 64-bit IEEE 754 floating-point
• char: 2 unsigned bytes
• boolean: true (1), false (0)

Basic Data Types

• All the basic data types have a wrapper
class, which is spelled with the first letter as
a capital.

• Ex.: int -> class Int
• They are mostly useful when parsing a

specific value from a String.

Operators

Smaller than<

Greater than>

Difference!=

Equality. You should use the .equal() method when not dealing with
numbers

==

Concatenation on String+

Addition on numbers

Meaning
+

Operator

The operators are the same as in C, which is why we won’t
cover them in detail.
However, take note that Java won’t allow operator overloading

Constants
Java Allows you to define constants using the final keyword.

public final int MAX_CONNECTIONS = 127;

There is no enumeration available as in C.

Arrays & Cloning

• Arrays are declared as following:
Base_type[] <identifier_name>;
byte[] byteStream;

• Arrays are initialized similarly as in C++
byte[] byteStream = new byte[1024];

• Arrays support cloning. When passing
arrays around to classes who store array
information, you should use the .clone()
method to get a copy of the array and ensure
that the data won’t get corrupted.

Arrays & Cloning

• They are similar to C arrays, only that you
will receive a
ArrayIndexOutOfBoundsException if you
try to access beyond the allocated memory

• Use the .length data member to determine
the defined length of the array.

Strings

• Strings are atomic UTF-8 strings.
• This differs from C, where strings were simple

arrays of 8-bit characters
• Package: java.lang.String;
• They support practically all string-related

operations
• Useful methods:
endsWith, equalsIgnoreCase , lastIndexOf, replace, startsWith,

toLowerCase, toUpperCase, trim, valueOf

Vector

• Typical class implementing list, queues, stacks…
• Vector is a lot more useful than arrays in order to

manage data and accesses.
• Vector is self-adjusting, so you don’t have to

worry too much about memory management.
• Package: java.util.Vector;

Vector

Method Summary

void add(int index, Object element)
Inserts the specified element at the specified position in this Vector.

void addElement (Object obj)
Adds the specified component to the end of this vector, increasing its size by one.

void clear()
Removes all of the elements from this Vector.

Object clone()
Returns a clone of this vector.

boolean contains (Object elem)
Tests if the specified object is a component in this vector.

Object elementAt(int index)
Returns the component at the specified index.

int indexOf (Object elem)
Searches for the first occurence of the given argument, testing for equality using the equals method.

Vector

void insertElementAt(Object obj, int index)
Inserts the specified object as a component in this vector at the specified index.

boolean isEmpty()
Tests if this vector has no components.

Object lastElement ()
Returns the last component of the vector.

Object remove(int index)
Removes the element at the specified position in this Vector.

boolean removeElement (Object obj)
Removes the first (lowest- indexed) occurrence of the argument from this vector.

void setElementAt(Object obj, int index)
Sets the component at the specified index of this vector to be the specified object.

int size()
Returns the number of components in this vector.

Object[] toArray ()
Returns an array containing all of the elements in this Vector in the correct order.

Object

• Object is the base class of all classes in
Java. As such, it can polymorphically
represent all objects.

• Some classes will return Object types, and
so you need to cast them to be useful

• For example:
String aString = “12345”; Vector aVector = new Vector();
aVector.addElement(aString); String result = (String) aVector.elementAt(0);

Math

• Math is a catchall object that puts together
the major mathematical functions

• Package: java.lang.Math;

Math
Method Summary

static double abs (double a)
Returns the absolute value of a double value.

static double acos (double a)
Returns the arc cosine of an angle, in the range of 0.0 through pi.

static double asin(double a)
Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

static double atan(double a)
Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

static double atan2(double a, double b)
Converts rectangular coordinates (b, a) to polar (r, theta).

static double ceil(double a)
Returns the smallest (closest to negative infinity) double value that is not less than the argument and is equal to a

mathematical integer.

Math
static double cos (double a)

Returns the trigonometric cosine of an angle.

static double exp(double a)
Returns the exponential number e (i.e., 2.718...) raised to the power of a double value.

static double floor(double a)
Returns the largest (closest to positive infinity) double value that is not greater than the argument and is equal to a

mathematical integer.

static double IEEEremainder(double f1, double f2)
Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.

static double log(double a)
Returns the natural logarithm (base e) of a double value.

static double max (double a, double b)
Returns the greater of two double values.

static double min(double a, double b)
Returns the smaller of two double values.

Math

static double pow(double a, double b)
Returns of value of the first argument raised to the power of the second argument.

static double random()
Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.

static long round(double a)
Returns the closest long to the argument.

static double sin(double a)
Returns the trigonometric sine of an angle.

static double sqrt (double a)
Returns the correctly rounded positive square root of a double value.

static double tan(double a)
Returns the trigonometric tangent of an angle.

static double toDegrees (double angrad)
Converts an angle measured in radians to the equivalent angle measured in degrees.

static double toRadians (double angdeg)
Converts an angle measured in degrees to the equivalent angle measured in radians.

System.* I/O

• System is the variable that represents the computer
system

• It has 3 major classes:
• System.out
• System.err
• System.in
• We will not cover the details of I/O in this

introduction, but only enough so you can do
simple input/output programs.

System.out & System.err

• System.out prints to STDOUT
• System.err prints to STDERR
• They are of type PrintStream, which captures all

exceptions
• Significant methods: print, prinln
• It acts as an equivalent to cout and cerr in C++

System.in

• System.in reads from STDIN
• It is of type InputStream, which is very limited for

reading
• As such, it is normally combined
BufferedReader stdin = new BufferedReader(new

InputStreamReader(System.in));

• Calls such as .readline() are very convenient.
• However, the exceptions are not handled

automatically.

Using Java from the command
line

The process is in 2 steps:
• Compilation: javac *.java
• Execution: java [name of main class]
• javac will tell you syntax errors and will pre-

compile the .java files into .class files
• java will run the main class that you specify

JBuilder & SunOne Development
Environments

• JBuilder is only available in H905
• SunOne is available in all labs
• You can download a copy of the personal version

on the internet for free.
• JBuilder: http://www.borland.com/products/downloads/download_jbuilder.html#

• SunOne: http://wwws.sun.com/software/sundev/jde/buy/index.html

JBuilder IDE

• JBuilder is my personal favorite
• As-you-type syntax error notification
• Pop-up help indicating available methods
• Method parameter popping-up
• Automatic adding of missing bracket
• Very good help system
• Integrates Javadoc, CVS, UI development
• The version in the lab is older and not as good as

the one you can download

JBuilder IDE

• JBuilder provides many wizards to help you create
projects, applications, classes…

• Tabbed editing view allows to simply handle
multiple classes open at the same time

JBuilder IDE

Create a new Application

Add classes

SunOne IDE

• Slower than JBuilder
• Clumsy help system
• If misconfigured, too many windows!
• Integrates CVS, Javadoc, UI development
• Large set of templates to choose from
• I’ll tell you more about it, since it’s the default

tool in the labs

SunOne IDE

SunOne IDE

Make sure to select full screen mode

SunOne IDE

There is no customizing necessary.
Just click Finish

SunOne IDE

Don’t bother with registration

SunOne IDE

This is the welcoming screen.
The ‘New’ and ‘Open File’ options
are what you’re looking for

SunOne IDE

In the ‘New’ dialog, you can
choose a template to base your
development on.
Generally, just select ‘class’

SunOne IDE

Set the name of the package and class

SunOne IDE

Then define the superclass

SunOne IDE

Then add fields without
bothering about Java syntax

SunOne IDE

Set which methods to override from parent

SunOne IDE

Define methods with no concern for precise syntax

SunOne IDE

Voilà, your class has been created!

Please take note of the Editing,
GUI Editing, Running and
Debugging tabs

SunOne IDE

You can set CVS directly, so
you don’t need to bother
learning CVS commands

In the labs, CVS repositories are located on the u:\ drive

SunOne IDE
Generating Javadoc is
automated.

However, displaying the
generated javadoc is not
straightforward.

The javadoc is stored on
g:\forte\javadoc for the
default configuration.

