
Java User Interfaces with Swing
in SunOne

An introduction to the Swing API and
code generation in the SunOne

development environment.

By Marc-André Laverdière

Ordre du Jour

w What is Swing?
w Introduction to the drag-and-drop GUI development

in SunOne
w First glance at Swing components in SunOne
w Basics of Swing

n Class hierarchies
n AWT Mode of Operation and Consequences
n Event Handling

w API
w References

What is Swing?

w Swing is a platform-independent, high-level API to
build user interfaces
w Swing won’t allow you to draw a canvas or graphic

objects, you need AWT for that.
w Packages: java.awt.*, java.awt.event.*,

javax.swing.*.
w We will focus on the most commonly used

elements. If you want to learn more about a specific
component, tutorials are all over the ‘net.

Introduction to the drag-and-drop
GUI development in SunOne

classes

Visual Editor

Component
hierarchy

Selected
component
properties

Code / GUI editing tabs

Introduction to the drag-and-drop
GUI development in SunOne

We use the New Wizard to
create the class.
The description also help
us make the right choice.
As a reminder, Swing
components normally begin
with a J.

Introduction to the drag-and-drop
GUI development in SunOne

w The symbols, from
left to right:

w JLabel
w JButton
w JToggleButton
w JCheckBox
w JRadioButton
w ButtonGroup
w JComboBox
w JList
w JTextField
w JTextArea
w JPanel

w JTabbedPane
w JScrollBar
w JScrollPane
w JMenuBar
w JPopupMenu

Introduction to the drag-and-drop
GUI development in SunOne

w The symbols, from
left to right:

w JSlider
w JProgressBar
w JSplitPane
w JPasswordField
w JSeparator
w JTextPane
w JEditorPane
w JTree
w JTable
w JToolBar
w JInternalFrame

w JLayeredPane
w JDesktopPane
w JOptionPane
w JColorChooser
w JFileChooser
w Jframe
w JDialog

Introduction to the drag-and-drop
GUI development in SunOne

w The symbols, from
left to right:

w FlowLayout
w BorderLayout
w GridLayout
w GridBagLayout
w CardLayout
w BoxLayout
w AbsoluteLayout
w NullLayout

Introduction to the drag-and-drop
GUI development in SunOne

The components are added by drag-and-drop

And their hierarchy
is shown explicitely

Introduction to the drag-and-drop
GUI development in SunOne

You can select
a component
and show its
related source

Introduction to the drag-and-drop
GUI development in SunOne

Introduction to the drag-and-drop
GUI development in SunOne

Sorting of options

Groups Properties, event
editing and options

First glance at Swing
components in SunOne

Layouts

w FlowLayout: components are added on a row, one after the other. They
are put on the line below if not enough room remains.

w BorderLayout: components are added at the edges and center of the area.
w GridLayout: creates a ‘table’ in which to put components.
w GridBagLayout: similar to GridLayout. Each component has its own size,

and items can be inserted in any order.
w CardLayout: many layouts (such as JPanel) are stacked on each other.

Only the top one is visible and we can decide which one to show.
w BoxLayout: organizes components vertically or horizontally.
w AbsoluteLayout: allow to put components wherever you want them to go.
w Null Layout: behaves just like AbsoluteLayout.

JMenuBar

JMenuBar can
contain many
Jmenu instances,
which in turn may
hold many
JMenuItem
instances.

JMenuBar

Bad example: keep
Alt+? for mnemonics

Many components support an
‘accelerator’ key sequence
(AKA keyboard shortcuts).
Make sure to define them with
the wizard provided.
Also, mnemonics are
supported, enabling key
sequences such as Alt-F.
Also, set the toolTipText
property. It shows a bubble
that helps users and that
enables screen readers.

JPanel

w JPanel is a generic ‘holder’ component.
w Each JPanel has a layout associated. As

such, when mixing layout styles, do so with
embedded JPanel instances.
w JPanel can hold pretty much anything

within itself.
w JPanel is the likely candidate when using

borders.

JTabbedPane

w JTabbedPane is also a ‘holder’. Each
subcomponent of a JTabbedPane is in its
own tab.
w You should use a JPanel for every tab you

want to show.

JRadioButton

w JRadioButton is the classical radio button:
only one in a group may be selected.
w In order to group them, you need a

ButtonGroup to which it is linked.

JCheckBox

wMany checkboxes can be selected at any
given time.
w They should be grouped together with a

ButtonGroup, but this is not required.

JLabel

w A simple text label
w Rarely needed. Most of the time, the other

components come with their own label.

JButton

w The average button

JComboBox

w Scrolldown list
w The choices are put manually in the code

with the .addItem() call, which accepts a
String object.

JList

w Selection list
w The choices are normally provided in the

constructor of the object, by passing an
array of String objects.
w The scrolldown bar is added automatically

if need be.
w JList objects allow single entry selection or

multiple-entry selection modes.

JTextField + JPasswordField

w Allows to prompt for user input for a single
line of text.
w JPasswordField is identical, but won’t

display the characters typed.

JTextPane

w Supports multi-line text, as well as multi-
text property setting.
wWhat you’d use if you felt like re-doing

Notepad.
w Doesn’t automatically integrate a scrollbar.

JEditorPane

w Similar to JTextPane, but has an integrated
support for HTML, including URL objects.
w Also features a HTML parser

JScrollPane

w JScrollPane is another ‘holder’ object.
w It will make relevant scrollbars appear when

needed by the held object.
w Normally combined with a JTextPane or a

JEditorPane.

Borders

w These can be put around
holder components such
as a JPanel.
w Use the properties

window to set them.

Basics of Swing

w Swing is a Java-based implementation over the
Abstract Windowing Toolkit (AWT) package
w It offers easier cross-platform development, since it

doesn’t rely directly on the underlying platform’s
windowing system.
w Beware of usability issues this introduces when

developing multi-platform software.
w Remember that GUI programming is inherently

messy code-wise, but try to avoid the monolithic
code structure, even if this is what is encouraged by
SunOne’s code generator.

Class Hierarchies

http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/shortcourse.html

This hierarchy shows
how the basic Swing
objects are structured
in a inheritance
hierarchy.

Keep in mind that
JComponent inherits
from
java.awt.Container.

Class Hierarchies

http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/shortcourse.html

This hierarchy
complements the
previous one.
It shows newer Swing
components.

Class Hierarchies

Comment Programmer en Javatm troisième édition, Deitel & Deitel, Les Éditions
Reynald Goulet Inc., 1999, p.565

Events & Listeners

AWT Mode of Operation and
Consequences

w AWT components all run in a single thread of
execution.

w This thread both handles the display of components on
the screen (painting) and event handling.

w Remember that Swing is (mostly) a Java wrapping over
AWT.

w This imposes tough real-time constraints on UI
designers, especially for programs running on older
machines.

AWT Mode of Operation and
Consequences

w Rule of thumb A: keep the user interfaces very simple,
making judicious use of object properties such as
visible.

w Rule of thumb B: Design event-handling routines so
that they are executed very quickly. If this is
impossible, then multithreading is necessary. Failure to
do so may result in a screen that is ‘frozen’ to the user,
which is a major usability issue.

Event Handling

w Event handling is where a lot of work will be invested.
w The more complex the functionality to implement, the trickier

will be the related event handler.
w AWT has many event types, but only a few are relevant for Swing

components, and only a few are useful. Also, there are event types
specific to Swing components.

w There are many interfaces usable, but it is recommended to inherit
adapters.

w Try to put event handlers into separate files in order to facilitate
maintainability

w Avoid embedded anonymous subclasses for event handling, this is
the worst thing maintenance-wise. Some authors show code
examples that do that, but keep in mind that it is done in order to
shorten the code sample.

Event Handling

w Events are generated from input devices or special software
constructs such as timers.

w The object targeted by the event will load the designated event
handler for the type of event received, or will ignore the event if
none are registered.

w The event handler will call the appropriate method related to the
event, and some methods are meant to ‘work together’ for certain
tasks.

w Event handlers can be assigned to many components, in order to
centralize decision logic and facilitate maintenance.

Event Handling Hierarchy

w All event objects are derived from java.util.EventObject
w The getSource() method has a reference to Swing

component to which the event was directed. You should
cast this in the appropriate type in order to distinguish
among many events on the same listener.

API

w Events’ API
w Event-Handling API
w Components’ API

Events’ API

MouseEvent

http://java.sun.com/j2se/1.4/docs/api/

An event which indicates that a mouse action occurred in a component. A
mouse action is considered to occur in a particular component if and only
if the mouse cursor is over the unobscured part of the component's bounds
when the action happens. Component bounds can be obscurred by the
visible component's children or by a menu or by a top-level window. This
event is used both for mouse events (click, enter, exit) and mouse motion
events (moves and drags).

MouseEvent

Method Summary
int getButton()

Returns which, if any, of the mouse buttons has changed state.

int getClickCount ()
Returns the number of mouse clicks associated with this event.

static String getMouseModifiersText(int modifiers)
Returns a String describing the modifier key(s), such as "Shift", or "Ctrl+Shift".

Point getPoint ()
Returns the x,y position of the event relative to the source component.

int getX ()
Returns the horizontal x position of the event relative to the source component.

int getY ()
Returns the vertical y position of the event relative to the source component.

boolean isPopupTrigger()
Returns whether or not this mouse event is the popup menu trigger event for the platform.

String paramString()
Returns a parameter string identifying this event.

void translatePoint (int x, int y)
Translates the event's coordinates to a new position by adding specified x (horizontal) and y (vertical) offsets.

http://java.sun.com/j2se/1.4/docs/api/

MouseEvent
Field Summary

static int BUTTON1
Indicates mouse button #1; used by getButton().

static int BUTTON2
Indicates mouse button #2; used by getButton().

static int BUTTON3
Indicates mouse button #3; used by getButton().

static int MOUSE_CLICKED
The "mouse clicked" event.

static int MOUSE_DRAGGED
The "mouse dragged" event.

static int MOUSE_ENTERED
The "mouse entered" event.

static int MOUSE_EXITED
The "mouse exited" event.

static int MOUSE_FIRST
The first number in the range of ids used for mouse events.

static int MOUSE_LAST
The last number in the range of ids used for mouse events.

static int MOUSE_MOVED
The "mouse moved" event.

static int MOUSE_PRESSED
The "mouse pressed" event.

static int MOUSE_RELEASED
The "mouse released" event.

static int MOUSE_WHEEL
The "mouse wheel" event.

static int NOBUTTON
Indicates no mouse buttons; used by getButton().

http://java.sun.com/j2se/1.4/docs/api/

ActionEvent

http://java.sun.com/j2se/1.4/docs/api/

•A semantic event which indicates that a component-defined action
occured. This high-level event is generated by a component (such as a
Button) when the component-specific action occurs (such as being
pressed). The event is passed to every every ActionListener object
that registered to receive such events using the component's
addActionListener method.

•The object that implements the ActionListener interface gets this
ActionEvent when the event occurs. The listener is therefore spared
the details of processing individual mouse movements and mouse
clicks, and can instead process a "meaningful" (semantic) event like
"button pressed".

ItemEvent

http://java.sun.com/j2se/1.4/docs/api/

•A semantic event which indicates that an item was selected or
deselected. This high-level event is generated by an ItemSelectable
object (such as a List) when an item is selected or deselected by the
user. The event is passed to every ItemListener object which
registered to receive such events using the component's
addItemListener method.
•The object that implements the ItemListener interface gets this
ItemEvent when the event occurs. The listener is spared the details of
processing individual mouse movements and mouse clicks, and can
instead process a "meaningful" (semantic) event like "item selected"
or "item deselected".

ItemEvent

http://java.sun.com/j2se/1.4/docs/api/

Field Summary
static int DESELECTED

This state-change-value indicates that a selected item was deselected.

static int ITEM_FIRST
The first number in the range of ids used for item events.

static int ITEM_LAST
The last number in the range of ids used for item events.

static int ITEM_STATE_CHANGED
This event id indicates that an item's state changed.

static int SELECTED
This state-change value indicates that an item was selected.

Method Summary
Object getItem()

Returns the item affected by the event.

ItemSelectable getItemSelectable()
Returns the originator of the event.

int getStateChange()
Returns the type of state change (selected or deselected).

String paramString()
Returns a parameter string identifying this item event.

ListSelectionEvent

http://java.sun.com/j2se/1.4/docs/api/

An event that characterizes a change in the current selection.
The change is limited to a row interval.
ListSelectionListeners will generally query the source of the
event for the new selected status of each potentially changed
row.

That means that, in general, the ListSelectionEvent handler
will not normally rely on the event’s information, but will
consider the event as a notification that there is a need to
check on the state of the list.

WindowEvent

http://java.sun.com/j2se/1.4/docs/api/

A low-level event that indicates that a window has changed its status.
This low-level event is generated by a Window object when it is opened,
closed, activated, deactivated, iconified, or deiconified, or when focus is
transfered into or out of the Window.
The event is passed to every WindowListener or WindowAdapter
object which registered to receive such events using the window's
addWindowListener method. (WindowAdapter objects implement the
WindowListener interface.) Each such listener object gets this
WindowEvent when the event occurs.

It is useful to monitor this event especially in cases that there are
components to redraw or when the window is closed. Swing (or SunOne
Code generator) does so automatically, so you don’t need to bother about it

KeyEvent

http://java.sun.com/j2se/1.4/docs/api/

An event which indicates that a keystroke occurred in a component.
This low-level event is generated by a component object (such as a text field) when a key is pressed,
released, or typed. The event is passed to every KeyListener or KeyAdapter object which registered to
receive such events using the component's addKeyListener method. (KeyAdapter objects implement
the KeyListener interface.) Each such listener object gets this KeyEvent when the event occurs.
"Key typed" events are higher-level and generally do not depend on the platform or keyboard layout.
They are generated when a Unicode character is entered, and are the preferred way to find out about
character input. In the simplest case, a key typed event is produced by a single key press (e.g., 'a'). Often,
however, characters are produced by series of key presses (e.g., 'shift' + 'a'), and the mapping from key
pressed events to key typed events may be many-to-one or many-to-many. Key releases are not usually
necessary to generate a key typed event, but there are some cases where the key typed event is not
generated until a key is released (e.g., entering ASCII sequences via the Alt-Numpad method in
Windows).

These are handled for you for the shortcuts and so on. There is little need to
bother about that event, unless you were to implement a ‘on-the-fly’ text
entry like Rational.

KeyEvent

http://java.sun.com/j2se/1.4/docs/api/

KeyEvent has very many constants that we won’t detail. But we’ll see the methods. Consult the API
documentation for the list of keys and subtleties.

Method Summary
char getKeyChar()

Returns the character associated with the key in this event.

int getKeyCode()
Returns the integer keyCode associated with the key in this event.

int getKeyLocation()
Returns the location of the key that originated this key event.

static String getKeyModifiersText(int modifiers)
Returns a String describing the modifier key(s), such as "Shift", or "Ctrl+Shift".

static String getKeyText(int keyCode)
Returns a String describing the keyCode, such as "HOME", "F1" or "A".

boolean isActionKey ()
Returns whether the key in this event is an "action" key.

String paramString()
Returns a parameter string identifying this event.

void setKeyChar(char keyChar)
Set the keyChar value to indicate a logical character.

void setKeyCode(int keyCode)
Set the keyCode value to indicate a physical key.

void setModifiers (int modifiers)
Set the modifiers to indicate additional keys that were held down (e.g.

Event Handler API

w SunOne will automatically register default event
handlers for you, and create a method for you to add
code in.

w You should avoid to put your event handling code
directly, for maintainability reasons.

w The rule of thumb is to inherit the appropriate handler
into a new class and make an indirection to this class.

MouseInputAdapter

http://java.sun.com/j2se/1.4/docs/api/

The adapter which receives mouse events and mouse motion events. The
methods in this class are empty; this class is provided as a convenience for
easily creating listeners by extending this class and overriding only the
methods of interest.

MouseInputAdapter

http://java.sun.com/j2se/1.4/docs/api/

Method Summary
void mouseClicked(MouseEvent e)

Invoked when the mouse button has been clicked (pressed and released) on a component.

void mouseDragged(MouseEvent e)
Invoked when a mouse button is pressed on a component and then dragged.

void mouseEntered(MouseEvent e)
Invoked when the mouse enters a component.

void mouseExited(MouseEvent e)
Invoked when the mouse exits a component.

void mouseMoved(MouseEvent e)
Invoked when the mouse button has been moved on a component (with no buttons down).

void mousePressed(MouseEvent e)
Invoked when a mouse button has been pressed on a component.

void mouseReleased(MouseEvent e)
Invoked when a mouse button has been released on a component.

KeyAdapter

http://java.sun.com/j2se/1.4/docs/api/

An abstract adapter class for receiving keyboard events. The
methods in this class are empty. This class exists as convenience
for creating listener objects.

Method Summary
void keyPressed(KeyEvent e)

Invoked when a key has been pressed.

void keyReleased(KeyEvent e)
Invoked when a key has been released.

void keyTyped(KeyEvent e)
Invoked when a key has been typed.

ActionListener

http://java.sun.com/j2se/1.4/docs/api/

The listener interface for receiving action events. The class that is
interested in processing an action event implements this interface,
and the object created with that class is registered with a
component, using the component's addActionListener method.
When the action event occurs, that object's actionPerformed
method is invoked.

Method Summary
void actionPerformed(ActionEvent e)

Invoked when an action occurs.

ItemListener

http://java.sun.com/j2se/1.4/docs/api/

The listener interface for receiving item events. The class that is
interested in processing an item event implements this interface.
The object created with that class is then registered with a
component using the component's addItemListener method.
When an item-selection event occurs, the listener object's
itemStateChanged method is invoked.

Method Summary
void itemStateChanged(ItemEvent e)

Invoked when an item has been selected or deselected by the user.

ListSelectionListener

http://java.sun.com/j2se/1.4/docs/api/

The listener that's notified when a lists selection value changes.

Method Summary
void valueChanged(ListSelectionEvent e)

Called whenever the value of the selection changes.

WindowAdapter

http://java.sun.com/j2se/1.4/docs/api/

An abstract adapter class for receiving window events. The
methods in this class are empty. This class exists as convenience
for creating listener objects.
Extend this class to create a WindowEvent listener and override
the methods for the events of interest. (If you implement the
WindowListener interface, you have to define all of the methods
in it. This abstract class defines null methods for them all, so you
can only have to define methods for events you care about.)

WindowAdapter

http://java.sun.com/j2se/1.4/docs/api/

Method Summary
void windowActivated(WindowEvent e)

Invoked when a window is activated.

void windowClosed(WindowEvent e)
Invoked when a window has been closed.

void windowClosing(WindowEvent e)
Invoked when a window is in the process of being closed.

void windowDeactivated(WindowEvent e)
Invoked when a window is de-activated.

void windowDeiconified(WindowEvent e)
Invoked when a window is de-iconified.

void windowGainedFocus (WindowEvent e)
Invoked when the Window is set to be the focused Window, which means that the Window, or one of its subcomponents, will receive keyboard events.

void windowIconified(WindowEvent e)
Invoked when a window is iconified.

void windowLostFocus (WindowEvent e)
Invoked when the Window is no longer the focused Window, which means that keyboard events will no longer be delivered to the Window or any of its subcomponents.

void windowOpened(WindowEvent e)
Invoked when a window has been opened.

void windowStateChanged(WindowEvent e)
Invoked when a window state is changed.

Components’ API

w In this section, we focus on the components previously introduced
w We will list the important methods and data members, as well as

associated relevant events
w We do not cover the API in depth, especially since most

functionality is covered in SunOne. Furthermore, there is no need
to cover methods extensively, since most of the set---() methods
are generated automatically in SunOne.

w Remember to have the toolTipText property set for all
components.

w For full details, refer to http://java.sun.com/j2se/1.4/docs/api/

JMenuBar API

w Relevant event: ActionEvent on mouse click/activation
w Associated handler: ActionListener.actionPerformed
w Behavior: when activated, the submenu will be shown
w Useful properties: enabled, mnemonic,text

JMenu API

w Relevant event: ActionEvent on mouse click/activation
w Associated handler: ActionListener.actionPerformed
w Behavior: Show submenu if needed otherwise launch action of handler.
w “An implementation of a menu -- a popup window containing

JMenuItems that is displayed when the user selects an item on the
JMenuBar. In addition to JMenuItems, a JMenu can also contain
JSeparators.

w In essence, a menu is a button with an associated JPopupMenu. When
the "button" is pressed, the JPopupMenu appears. If the "button" is on
the JMenuBar, the menu is a top-level window. If the "button" is
another menu item, then the JPopupMenu is "pull-right" menu.“

w Useful properties: enabled, mnemonic, text

http://java.sun.com/j2se/1.4/docs/api/

JPanel API

w Relevant event: no specific event
w Associated handler: none
w Behavior: No observable behavior
w Useful properties: preferredSize

http://java.sun.com/j2se/1.4/docs/api/

JTabbedPane API

w Relevant event: no specific event
w Associated handler: none
w Behavior: Clicking on a tab automatically brings forward the

JComponent object associated to it, and hides the other ones.
w Useful properties: tabPlacement
w Note: in order to change the name of the tabs, you can do so

in the source code by changing the first parameter of the
addTab() method.

http://java.sun.com/j2se/1.4/docs/api/

JRadioButton API

w Relevant event: ItemEvent, use getSource()
w Associated handler: ItemListener
w Behavior: All the radio buttons in the same ButtonGroup

object are mutually exclusive.
w Useful properties: buttonGroup, enabled, selected,

mnemonic, horizontalAlignment, horizontalTextPosition,
text, verticalAlignment, verticalTextPosition

http://java.sun.com/j2se/1.4/docs/api/

JCheckBox API

w Relevant event: ItemEvent, use getSource() and SELECTED
w Associated handler: ItemListener
w Behavior: no particular behavior.
w Useful properties: buttonGroup, enabled, selected,

mnemonic, horizontalAlignment, horizontalTextPosition,
text, verticalAlignment, verticalTextPosition

http://java.sun.com/j2se/1.4/docs/api/

JLabel API

w Relevant event: no specific event
w Associated handler: none
w Behavior: no particular behavior.
w Useful properties: enabled, selected, mnemonic,

horizontalAlignment, horizontalTextPosition, text,
verticalAlignment, verticalTextPosition

http://java.sun.com/j2se/1.4/docs/api/

JButton API

w Relevant event: ActionEvent
w Associated handler: ActionListener
w Behavior: no particular behavior.
w Useful properties: enabled, horizontalAlignment,

horizontalTextPosition, icon, preferredSize, text,
verticalAlignment, verticalTextPosition

http://java.sun.com/j2se/1.4/docs/api/

JComboBox API

w Relevant event: ItemEvent, use the list’s getSelectedIndex()
w Associated handler: ItemListener
w Behavior: no particular behavior.
w Useful properties: enabled, maximumRowCount, model,

preferedSize, SelectedIndex
w Note: the strings held in the JComboBox are set with the

model property

http://java.sun.com/j2se/1.4/docs/api/

JList API

w Relevant event: ListSelectionEvent, use the list’s getSelectedIndex() or
getSelectedValues()

w Associated handler: ListSelectionListener
w Behavior: there are different selection methods available,

SINGLE_INTERVAL_SELECTION,
MULTIPLE_INTERVAL_SELECTION, SINGLE_SELECTION, set in
selectionMode

w Useful properties: enabled, layoutOrientiation, model, preferedSize,
selectedIndex, selectionMode

w Note: the strings held in the JComboBox are set with the model property.
Also, you need to embed it within a JScrollPane if you want scrollbars

http://java.sun.com/j2se/1.4/docs/api/

JTextField +JPasswordField
API

w Relevant event: ActionEvent, when pressing the ‘enter’ key.
w Associated handler: ActionListener
w Behavior: JPasswordField hides the actual contents of the

field. To fetch data in the fields:
JPasswordField.getPassword(),
ActionEvent.getActionCommand()

w Useful properties: editable, enabled, text

http://java.sun.com/j2se/1.4/docs/api/

JTextPane API

w Relevant event: no specific event
w Associated handler: none
w Behavior: JTextPane allows to have text with multiple font

styles in it. Its semantics are a bit complex, and it is useful
only if you need to do serious text entry.

w Useful properties: editable, enabled, text
w Note: You need to embed it within a JScrollPane if you want

scrollbars. You should use it with a DefaultStyledDocument.

http://java.sun.com/j2se/1.4/docs/api/

JEditorPane API

w Relevant event: HyperlinkEvent
w Associated handler: HyperlinkListener
w Behavior: JEditorPane is the superclass of JTextPane, with

HTML and RTF support. It also loads hyperlinks from URL
objects

http://java.sun.com/j2se/1.4/docs/api/

JScrollPane API

w Relevant event: no specific event
w Associated handler: none
w Behavior: components objects within a JScrollPane now are

able to be scrolled up and down, left and right if needed.
w Useful properties: enabled, horizontalScrollBarPolicy,

verticalScrollBarPolicy, wheelScrollingEnabled

http://java.sun.com/j2se/1.4/docs/api/

References

w Sun’s tutorials and references:
w http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/shortcourse.html
w http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2/shortcourse.html
w http://java.sun.com/docs/books/tutorial/uiswing/events/eventsandcomponents.html

w Java How to Program, Deitel & Deitel,
examples: http://www.deitel.com/books/downloads.html

w You really should download the slides for chapters 11-15.

