
Summary of UML Notation in 
Rational Rose 2002

By Marc-André Laverdière

With extracts from: http://www.sparxsystems.com.au/UML_Tutorial.htm and
http://amstel.wins.uva.nl/~martinbe/umldiag/uml1.htm (Recommended Reference)



Covered Today

• Basics
– Use Case Diagrams
– Sequence Diagrams
– System Sequence Diagrams
– Class Diagrams
– Activity Diagrams
– Statechart Diagram

• Architecture
– Packages
– Component View
– Deployment View



Use Case Diagrams

• Use Case Diagrams represent the functional 
requirements of the system, how they 
interconnection, and which actors uses them

• Actors here are roles and representatives, not 
specific persons

• Use Case Diagrams can be used to model pretty 
much anything.

• We will focus here on the most important 
elements of the notation

• There are many stereotypes, but most are of very 
little use, so we won’t detail them.



Use Case Diagrams
• The Use Case 

Diagram shows actors 
and related use cases, 
as well as relations 
between use cases

Relationships:
•extends: One use case extends the relationship of 
another. It is a branching off the original flow. See it as a 
conditional statement.
•uses/includes: The use case pointed to is used by the 
pointing use case every time (in this case, “Register with 
BookShop” includes “Login”)



Sequence Diagrams

• Sequence diagrams show the sequence of 
operation and relationships between objects.

• In the case of sequence diagrams, the operations 
are between instances of classes.

• Rational won’t let you explicitly show looping and 
conditional execution. Still, use the repetition 
notation and conditional notation with notes.

• Sequence diagrams should show the flow of 
operation. This will make your architectural 
decision very explicit.



Sequence Diagrams

This kind of arrow is a message

This kind of arrow is a return value This is a self-call

This is an informal sequence diagram.



Sequence Diagrams

Example of ad hoc conditional and looping notation.

Object1 Object2

[i ==0] Message1()

Message1

* Message2()

Object3

* Message3

Message1 and Message2 are repeated consecutively



System Sequence Diagrams

• System Sequence Diagrams are used to 
illustrate scenarios, and represent the 
system as a black box.

:Actor

:System

logIn

Prompt

Supply UserName, Password

logged on

Informal

:System
 : <Actor Name>

authenticateUser(userName:String, password:String)

AuthenticationOK

Formal
Doesn’t both with UI details



Class Diagrams

• A class diagram will show the classes that are part of a 
system or package.

• The internal data members and the methods are displayed.
• The Domain Model is a specific case of a class diagram. 

There are no methods, and data members are only of the 
most basic types (strings, numbers).

• Also the association arrows might not be directed, and 
aggregation is normally not shown.

• The classes shown in the domain model are those 
conceptual classes from the domain of study.



• The classes are shown here as an 
illustration

• A final design class diagram will 
normally have all methods and 
variables defined.

• Rational won’t let you have 
undirected arrows. This diagram 
was drawn in Visio.

• You can open the arrow’s property 
box in order to specify cardinality, 
aggregation, etc.

• The final note: the tool won’t make 
you draw good diagrams, you need 
to know UML and force the tool to 
cooperate as much as possible.

:System::Class1

:System::Class2

:System::Class3

«interface»
Interface1

interacts

-End1

1

-End2

*

An undirected association
Normal for domain models
However, it should have a 
cardinality

An aggregation
Normally not shown in 
domain models
It should have a name

Inheritance



Activity Diagrams

• Represents the sequence of 
action

• Used mostly for business 
modeling

• Of limited use in general
• Transitions are automatically 

triggered by completion of 
activity

• States are activities
• Special kind of statechart 

diagram

Log In the System

Open New Document

Wait

Edit Save



Statechart Diagrams

• Represents the state a system/subsystem is in, and events 
related to these states.

• Common use is to show sequence of external system 
events that are recognized and handled in the context of a 
use case

• Used in protocol design in the architecture phase.

Idle

Coin Received Serving

Rational Will let you put names on the transition and thus highlight the changes, Vision won't.

The notation for a transition is:
input[guard]/output



Packages

• Groups classes together
• Some classes are public, which means that they can be 

accessed outside the package
• Private classes can only be accessed within the package.
• Rose Won’t let you draw the packages with the level of 

detail you need.
• In this case, the packages supported in Rose are mostly 

useful to structure layering and to show dependencies.
• In architecture, we bother about components first. Then 

these components become packages of classes.
• Structuring into components is necessary to ensure quality 

of software, especially regarding cohesion, coupling and 
reusability.



Packages This illustration 
shows architectural 
structuring with 
packages and 
embedded packages.
Remember that these 
packages have 
classes that define 
their interfaces.

Excerpt from 
http://www.cs.umd.edu/~kang/435/design/pd.html



Packages
Animal

FishMammal
(from Mammals)

This simple example illustrates well.
The Mammal Class is within the 
Mammals package. 
As such, any referencing in 
class/sequence, etc. diagrams will 
therefore indicate the packages 
needed by the other classes.

It is strongly suggested to organize semantically similar 
classes in the same package.
This also holds true for related classes with specific 
performance constraints.



Component View Diagrams

• The actual 
architectural support is 
offered by Rational 
RealTime, but it 
doesn’t support the 
latest UML notation, 
which is very 
restrictive.

• You will show your 
layering and 
packaging here.

UI
<<<<layer>>>>

Domain
<<<<layer>>>>

Services
<<<<layer>>>>

NewCom
ponent5

NewCom
ponent6

NewCom
ponent7

NewCom
ponent8

DB

OS
<<<<layer>>>>

{all}



Component View Diagrams

UI
<<<<layer>>>>

Domain
<<<<layer>>>>

Services
<<<<layer>>>>

NewCom
ponent5

NewCom
ponent6

NewCom
ponent7

NewCom
ponent8

DB

OS
<<<<layer>>>>

{all}

Each the package have the 
<<layer>> stereotype here. We 
could also have <<module>> 
and <<subsystem>>.
Keep in mind that layers can 
have subsystems and/ or 
modules, and subsystems have 
modules. 

The {all} 
here 
shows a 
restraint

The dotted lines show dependency

Here the components are just images. For real component definition, 
use Rational Rose RealTime.



Deployment View Diagrams

• Rational makes it very hard to represent the 
deployment/execution view of a system.

• These diagrams show which processors run which 
processes, etc.

mainCPU

MP3 DSP
<<process>> Object1

<<thread>> Object2

<<process>>

-Interupt

*

*

-End1*

-End2*

Visio lets you put the classes and packages within the processing units.

However, Rose won't let you. Instead, it'll show at the bottom of each CPU the threads and processes that are run.



Deployment View Diagram

• You use class and package stereotypes such as 
<<process>>, <<thread>>, <<dll>>, etc. in order 
to represent which kind of component.

• You can easily show distributed and client/server 
architectures this way.

<processor name>

preemptive

<process name>
<thread name>

<device name>

This is what rational shows in its view, which doesn’t help that much.



Deployment View Diagram

• This is what the Deployment Diagram should look 
like (if Rational did draw real UML):


