

Ship On Sea Roll Simulator

(Team U1 Report)

François-Michel Brière (4474082)
Negar Famili (4481887)

Marc-André Laverdière (4469526)
Yann McCready (4463072)
Frédéric Rioux (4436288)
Jia-Wei Zhang (4466926)

Submitted to Dr. A. Allievi
Section U

March 28, 2002

Page ii

Table of Contents
Table of Contents ...ii
Table of Tables ...vi
Table of Screenshots .. vii

(Software Requirements Specifications) .. 1
1. Introduction ... 2

1.1. Purpose.. 2
1.2. Scope .. 2
1.3. Definitions, Acronyms and Abbreviations... 3

1.3.1. Definitions... 3
1.3.2. Acronyms.. 4

1.4. References ... 4
2. Overall Description .. 5

2.1. Product Perspective ... 5
2.2. Product Functions .. 5
2.3. Actor Characteristics .. 7
2.4. Constraints ... 7
2.5. Assumptions and Dependencies ... 7

3. Specific Requirements.. 8
3.1. Functional Requirements .. 8
3.2. External Interface Requirements...14

3.2.1. User Interface ..14
3.2.2. Hardware Interfaces ..17
3.2.3. Software Interfaces ...17
3.2.4. Communication Interfaces ..17

3.3. Performance Requirements ..17
3.4. Design Constraints..17
3.5. Logical Database Requirements ..17
3.6. Software System Attributes..17

3.6.1 Reliability ...17
3.6.2 Availability ..17
3.6.3 Security..17
3.6.4 Maintainability ...17
3.6.5 Transferability/Portability ..17
3.6.6 Learnability...17

3.7. Other Requirements..18
(Project Management Information) ..19

4. Introduction ..20
5. Time Estimation...20
6. Cost Estimation ...23
7. Team Members and Assignments..23
8. Task Organization – Gant Chart..27
9. Development Methodology ..29

(Software Design Document) ..30
10. Introduction ..31
11. Feature Implementation Concepts ..31
12. Conceptual Design ...37
13. Technical Design ..39

13.1. The Core ...41
13.2. The GUI ..42

13.2.1 Introduction ...42

Page iii

13.2.2 Tools ...43
13.2.3 GUI Architecture ...43
13.2.4 Error-Handling..44

(Implementation Guide)...45
14. Introduction ..46
15. Programming Style...46

15.1. Hungarian Notation...46
15.2. Code File Headers...46
15.3. Function Headers..47
15.4. Comments...47

16. Algorithm Implementation...48
16.1. General Considerations..48

16.1.1 Data Storage..48
16.1.2 Initialization ...48
16.1.3 Computing Interval ...48
16.1.4 Buffer Adjustment ...48

16.2. Specifics for Implementation of Explicit Euler Scheme........................48
16.3. Specifics for Implementation of Crank-Nicholson Scheme48
16.4. Specifics for Implementation of Predictor-Corrector Scheme48

(Testing) ...49
17. Introduction ..50
18. Cross-Review ..50
19. Mathematical Engine Unit Test ...50

19.1. Test Plan ...50
19.2. Test Specification ...50

19.2.1 Criteria ..50
19.2.2 Seeding ...50
19.2.3 Protocol ...51

19.3. Test Results...51
20. GUI Unit Test ..51

20.1. Test Plan ...51
20.2. Test Specification ...52

20.2.1 Criteria ..52
20.2.2 Seeding ...52
20.2.3 Protocol ...52

20.3. Test Results...52
21. System Test ..53

21.1. Test Plan ...53
21.2. Test Specification ...53

21.2.1 Criteria ..53
21.2.2 Seeding ...53
21.2.3 Protocol ...53

21.3. Test Results...54
(Validation) ..55

22. Introduction ..56
23. Validation Chart ...56

(Maintenance Recommendations) ..57
24. Introduction ..58
25. Maintenance Recommendations ...58
26. Change Management Process...59

26.1 Change Initiation ..60
26.2 Change Assessment ..60
26.3 Change Authorization ..61

Page iv

26.4 Change Implementation ..61
(Appendixes)..62

27. Variables ..63
28. Values for Predictor-Corrector Scheme ..63

Page v

Table of Figures
Figure 1: Use Cases for SOS Roll Motion Simulator ... 5
Figure 2: Gantt Chart for Tasks...27
Figure 3: Activity Graph ...28
Figure 4: Activity Diagram for System..39
Figure 5: Sequence Diagram for the System ...40
Figure 6: UML Diagram for Mathematical Engine..42
Figure 7: Example of File Header...47
Figure 8: Example of Function Header..47
Figure 9: Simplified Markhov Model ...53

Page vi

Table of Tables
Table 1: Implementation Sequence .. 2
Table 2: Sequence of Prototypes .. 3
Table 3: Definitions .. 3
Table 4: Acronyms ... 4
Table 5: Priority Scale... 6
Table 6: Function List ... 6
Table 7: Actors .. 7
Table 8: Priority Index .. 8
Table 9: Release Timeline ..18
Table 10: Time and Working Cost Analysis..22
Table 11: Software Costs ...23
Table 12: Other Costs Estimation ..23
Table 13: Cumulative Cost Estimation ..23
Table 14: Team Members & Tasks ...23
Table 15: Task Allocation & Follow-Up..26
Table 16: Hungarian Notation Prefixes ...46
Table 17: State Change Probabilities of Markhov Model54
Table 18: Validation Chart..56
Table 19: Suggested Function Addition...58
Table 20: High-Level Design for Supplemental Functions59
Table 21: Variables and Source...63
Table 22: Predictor Stage Coefficients and Error ..63
Table 23: Corrector Stage Coefficients ...63

Page vii

Table of Screenshots
Screenshot 1: Graphical User Interface with Angle Vs. Time & 3D Rendering15
Screenshot 2: 3D & Crossection Rendering, Showing Animation...........................16
Screenshot 3: Example Error Warning..44

Software Requirements Specifications – SOS Roll Simulator

Page 1

Part I

SOS Roll Simulator
(Software Requirements Specifications)

Software Requirement Specification – SOS Roll Simulator

Page 2

1. Introduction
This part consists of an SRD (Software Requirement Document) defining the overall
functionality of the SOS Roll Simulator system. The development team will use this
document as guidelines for the development of the system, and nothing but what is
specified in this document will be implemented.

1.1. Purpose
The purpose of this SRS (Software Requirement Specification) is to clearly set
the features that will be implemented by the development team for the SOS
Roll Simulator, as well as the features’ sequence of implementation, in a
manner to avoid confusion regarding the final product. The targeted audience
of this document is both the client and the development team.

1.2. Scope
The SOS Roll Simulator is to be a working scaled-down version program of a
real simulator system to be sold to customers. This customer’s demo will
show the potential users an overview of the real system’s capabilities.
The SOS Roll Simulator will be produced as a standalone simulation to be run
on Windows® 2000® or XP® desktop machine.

The simulator, based on user-defined values, will approximate the movement
of a ship in waves, plot the roll angle and roll speed as 2D and 3D graphs (θ
vs. t, θ’ vs. t and θ vs. θ’ vs. t).

The system will also display a view of the crossection of the ship, facilitating
analysis of the ship’s movements.

The system only simulates the effect of a side wave on the ship’s angle, and
doesn’t determine the ship’s reaction in case of extreme angles for complete
capsizing.

The SOS Roll Simulator includes many features that will be implemented
sequentially, as described in Table 1 below.

Release

Functionality Overview

0.1 Mathematical Engine offers approximation of results, data must be plotted
using a separate software package (Such as Excel or GNUplot)

0.2 Mathematical Engine offers improved algorithms and graphics are
produced by the Plotting Engine

0.3 GUI Integration for user-friendliness, Mathematical Engine is completed
and optimized

1.0 Full-featured GUI with 2D graphical plotting of data
1.1 Full-featured GUI with 3D graphical plotting of data
2.0 Full-featured GUI with 3D graphical plotting of data and save/load options

for data files
2.1 Full-featured GUI with 3D graphical plotting of data and save/load options

for data files and graphics/animations

Table 1: Implementation Sequence

Software Requirement Specification – SOS Roll Simulator

Page 3

Prototype # Functionality Overview
0.1 Validation of Approximation Algorithm using Microsoft Excel.
1 Mathematical Engine offers approximation of results, data must be

graphically plotted using a separate software package (Such as Excel
or GNUplot).

2 Mathematical Engine offers improved algorithms and Plotting Engine
provides 2D graph representations.

3 GUI Integration for user-friendliness and implementation of further
algorithms.

Table 2: Sequence of Prototypes

1.3. Definitions, Acronyms and Abbreviations
The following is a list of definitions, acronyms and abbreviations that will
facilitate the readers understanding of this document

1.3.1. Definitions
T Time
∆t Time Step
θ Roll Angle
θ’ Roll Angular velocity
θ’’ Roll Acceleration
θ0 Initial Roll Angle
θ’ 0 Initial Roll Angular velocity
θ’’ 0 Initial Roll Acceleration
ωw Wave Natural Frequency

ωe Wave Encounter Frequency

R Frequency Ratio
B Relative Fluctuation of Transverse Metacentric Height
Ixx Roll Virtual Mass’ Moment of Inertia
Kxx Roll Virtual Radius of Gyration
L Ship’s Length
B Ship’s Beam
D Ship’s Depth
T Ship’s Draft
KM Ship’s Metacentric Height
GM Ship’s Transverse Metacentric Height
W Ship’s Displacement
V Ship’s Speed
C0 Ship Block Coefficient
Cu Ship’s Upper Deck Area Coefficient
Ad Ship’s Projected lateral area of superstructures and deck houses above main deck

He Effective depth of the ship structure
LBP Ship length between perpendiculars
g Acceleration of Gravity
θmax Maximal Rotation Angle: beyond this value, the ship is considered as

having flipped

Table 3: Definitions

Software Requirement Specification – SOS Roll Simulator

Page 4

1.3.2. Acronyms

SRS Software Requirements Specifications
GUI Graphical User Interface
MFC Microsoft Foundation Classes
OOD Object-Oriented Design
PDI Parameter Definition Interface

Table 4: Acronyms

1.4. References
Dr. Alejandro Allievi: Algorithms to Integrate the Equation of Roll Motion
Dr. Alejandro Allievi: Ship stability via the Mathieu equation
S.L. Pfleeger: Software Engineering, Theory and Practice (as summarized by

Dr. Allejandro Allievi)

Software Requirement Specification – SOS Roll Simulator

Page 5

2. Overall Description

2.1. Product Perspective
The product in itself doesn’t constitute a useful simulator for advanced ship
engineering. However, it can help ship engineers quickly evaluate design
impact on a ship’s ability to survive side waves. It also offers this capability at
very low implementation cost, since almost every desktop computer can run
the simulation in a few seconds.

This gives an advantage to the sales personnel who make demonstrations to
potential clients using laptops or any on-location desktop.

Since the system is entirely standalone, no particular consideration to inter-
compatibility has been given.

2.2. Product Functions
A complete set of functions for the software package has been derived, based
on preliminary specifications from the customer and has been summarized in
Figure 1 and Table 6.

User

Modify Boat Attributes

Modify Environment Attributes

Modify Simulat ion Att ributes

Animate Graphs

Validation of data

<<uses>>

<<uses>>

<<uses>>

Compute Simulation results

Returns Results to User

System

Figure 1: Use Cases for SOS Roll Motion Simulator

Software Requirement Specification – SOS Roll Simulator

Page 6

Priority Detail
1 Must have
2 Should have
3 Nice to have
4 Unprioritary
removed Removed from

requirements

Table 5: Priority Scale

ID Function Description Priority

1
Mathematical
Engine

Offers an object-oriented implementation of
approximation algorithms for solving ODE. The
Engine stops computing when the angle reaches
θmax.

1

2 Data Bridge Offers a gateway for the data to be passed from the
Mathematical Engine components of the system.

Removed (see
section 3.1 for
reason)

3
2D Data Plotting
of Roll Angle

Displays the graph of the roll angle vs. time. 1

4
2D Data Plotting
of Roll Speed

Displays the graph of the roll speed vs. time. 1

5
Integrated
Interactive GUI

Allows setting of parameters, run simulations and
visualize results without restarting the program.
The main window is divided as described in
§2.3.2.1
This module is also responsible to warn the user
of any error in parameters and/or general errors.

1

6
3D Data Plotting
of Roll Speed
and Roll Angle

Displays a graph of roll angle • roll speed • time. 2

6.5
2D Data Plotting
of Comparison

Displays the graph of the roll speed vs. roll angle 3

7
3D Data Plotting
of Ship’s
Crossection

Displays an animation of the motion of the
crossection of the ship trough the time of the
simulation.

2

7.5
Display of
Graphs

Displays a graph selected by the user in full
screen mode.

Removed (see
section 3.1 for
reason)

8
Playback
Controls

Define controls for playback of the animation
sequence yielded by (7).
Playback will highlight the progression of the
simulation on (7), (6), (4) and (3).

3

Table 6: Function List

Software Requirement Specification – SOS Roll Simulator

Page 7

2.3. Actor Characteristics

Actor Description

General User

The user should be knowledgeable of ship design and wave
dynamics. The user will use the system on a regular basis and
might ask the system to process long unattended computation
(such as overnight simulations).

Customer
The customer is knowledgeable of ship design and ship motion
simulations. The customer provides the scientific framework
needed to develop the software.

Team Leader

The team leader is knowledgeable in all aspects of software
development and software engineering. He/She coordinates the
activities of the development team and ensures communication
with the users, including requirement elicitation, validates all
documents and code.

Software Architect
The Software Architect is specialized in software design
methodologies and provides a framework and guidelines for the
developers.

GUI Designer
The GUI Designer defines an easy to use, easy to learn and
difficult to make mistakes GUI.

Software
Developer

The Software Developer implements the software. He/She is
also responsible for testing.

Technical Writer
The Technical Writer is an expert in writing and programming
topics. He/She formalizes reports and provides complete
documentation for the project.

Table 7: Actors

2.4. Constraints
The system must be developed using Object-Oriented strategies, offer a full-
featured, easy to use GUI, featuring MFC and OpenGL.
All code must be written as to enhance reusability.

2.5. Assumptions and Dependencies
The system will be developed and run under Windows® 2000®.

We assume that the users will be knowledgeable of shipbuilding and of
rotational mechanics, which implies there is no need for a help module.

We assume the user will input the variables using the specified measurement
units. As such, we do not need to implement identification/conversion
algorithms for the measurement units.

We also assume a processing and display that will be faster than the user-
required simulation time. As such, some variables will have minimal values to
enforce this capability. Such minimal values will be determined after
performance evaluation on the minimal supported hardware.

Software Requirement Specification – SOS Roll Simulator

Page 8

3. Specific Requirements
Priority Detail
1 Must have
2 Should have
3 Nice to have
4 Unprioritary
removed Removed from requirements

Table 8: Priority Index

3.1. Functional Requirements

ID 1
Name Mathematical Engine
Description Offers an object-oriented implementation of approximation

algorithms for solving ODE. The Engine stops computing
when the angle reaches θmax.

Priority 1
Status Detailed Description, Incomplete Parts
Actors Software Developer, Team Leader
Pre-Conditions All parameters must’ve been set prior to run the

Mathematical Engine
Inputs Simulation Parameters, Ship Parameters, Environment

Parameters, Algorithm specification
Flow of Events
 Basic Path 1. Solver is created

2. Solver is initialized with initial conditions, reference
to buffers and function for F and Stop condition

3. Solver solves ODE and fill buffers with data
 Alternative Paths

none

Post-Conditions The internal data structure holding the data is full with the
computed values

Constraint(s) • Result of computation must be generated in less
than user-defined ∆t.

• Must assure measurement unit conversion.
Related Screenshot none
Source(s) Dr. Allievi, Customer

François-Michel Brière

Software Requirement Specification – SOS Roll Simulator

Page 9

ID 2
Name Data Bridge
Description Offers a gateway for the data to be passed from the

Mathematical Engine components of the system.
Priority Removed
Status The feature was integrated inside the Mathematical Engine

as a member function of Simulation class.
Actors Software Developer, Team Leader
Pre-Conditions The data must be currently crunching inside the

Mathematical Engine.
Inputs Data from the Mathematical Engine
Flow of Events
 Basic Path 1. The Mathematical Engine generates data at its own

rhythm and begins to fill the internal data structure.
2. The consumer takes data away from the data structure

and effectively consumes it, at its own rhythm,
concurrently with the data producing.

 Alternative Paths none
Post-Conditions none
Outputs Array holding data elements fetched from memory.
Contraint(s) • Must allow concurrent access as per the

producer/consumer problem
Related Screenshot none
Source(s) Marc-André Laverdière, Technical Writer

ID 3
Name 2D Data Plotting of Roll Angle
Description Displays the graph of the roll angle vs. time.
Priority 1
Status Coded
Actors Software Developer, GUI Designer, Team Leader
Pre-Conditions The Mathematical Engine must have processed its data.
Inputs Data from the Mathematical Engine
Flow of Events
 Basic Path 1. Mathematical Engine is initialized and launched.

2. Data is obtained and sent for the object to draw a 3D
plot of the data in OpenGL, from (6).

3. A 2D projection of the graph is displayed to the user,
representing the roll angle vs. time graph.

 Alternative Paths

If there is an error in the Mathematical Engine, then the
process stops after step 1 above

Post-Conditions none
Outputs Graphical output
Constraint(s) • Result of computation must be generated in less

than user-defined ∆t.
Related Screenshot Screenshot 2
Source(s) Dr. Allievi, Customer

Frédéric Rioux, Software Architect

Software Requirement Specification – SOS Roll Simulator

Page 10

ID 4
Name 2D Data Plotting of Roll Speed
Description Displays the graph of the roll speed vs. time.
Priority 1
Status Coded
Actors Software Developer, GUI Designer, Team Leader
Pre-Conditions The Mathematical Engine must have processed its data.
Inputs Data from the Mathematical Engine
Flow of Events
 Basic Path 1. Mathematical Engine is initialized and launched.

2. Data is obtained and sent for the object to draw a 3D
plot of the data in OpenGL, from (6).

3. A 2D projection of the graph is displayed to the user,
representing the roll angle vs. time graph.

 Alternative Paths

If there is an error in the Mathematical Engine, then the
process stops after step 1 above

Post-Conditions none
Outputs Graphical output
Constraint(s) • Result of computation must be generated in less

than user-defined ∆t.
Related Screenshot Screenshot 2
Source(s) Dr. Allievi, Customer

Frédéric Rioux, Software Architect

ID 5
Name Integrated Interactive GUI
Description Allows setting of parameters, run simulations and visualize

results without needing to exit and restart the program.
The main window is divided as described in §3.2.1
This module is also responsible to warn the user of any
error in parameters and/or general errors.

Priority 1
Status Coded
Actors Software Developer, GUI Designer, Team Leader
Pre-Conditions The system is ready to receive user input
Inputs none
Flow of Events
 Basic Path 1. The user inputs the parameters trough the Parameter

Input Panel, or by loading a file, as defined by (9).
2. The user launches the calculations by clicking on a button
3. The System displays the graphs specified by the user.

 Alternative Paths

none

Post-Conditions The system is ready to receive user input
Outputs none
Related Screenshot Screenshot 2
Source(s) Dr. Allievi, Customer

Yann McCready, GUI Designer & Software Programmer
François-Michel Brière, Team Leader

Software Requirement Specification – SOS Roll Simulator

Page 11

ID 6
Name 3D Data Plotting of Roll Speed and Roll Angle
Description Displays a graph of roll angle • roll speed • time.
Priority 2
Status Coded
Actors Software Developer, Team Leader
Pre-Conditions The Mathematical Engine must have processed its data.
Inputs Data from the Mathematical Engine
Flow of Events
 Basic Path 1. Mathematical Engine is initialized and launched.

2. Data is obtained and sent for the object to draw a 3D
plot of the data in OpenGL.

 Alternative Paths

If there is an error in the Mathematical Engine, then the
process stops after step 1 above

Post-Conditions none
Outputs Graphical output
Contraint(s) • Result of computation must be generated in less

than user-defined ∆t.
Related Screenshot Screenshot 2, Screenshot 2
Source(s) Dr. Allievi, Customer

Frédéric Rioux, Software Architect

ID 6.5
Name 2D Data Plotting of Comparison
Description Displays the graph of the roll speed vs. roll angle
Priority 3
Status Coded
Actors Software Developer, GUI Designer, Team Leader
Pre-Conditions The Mathematical Engine must have processed its data.
Inputs Data from the Mathematical Engine
Flow of Events
 Basic Path 1. Mathematical Engine is initialized and launched.

2. Data is obtained and sent for the object to draw a 3D
plot of the data in OpenGL, from (6).

3. A 2D projection of the graph is displayed to the user,
representing the roll angle vs. time graph.

 Alternative Paths

If there is an error in the Mathematical Engine, then the
process stops after step 1 above

Post-Conditions none
Outputs Graphical output
Constraint(s) • Result of computation must be generated in less

than user-defined ∆t.
Related Screenshot Screenshot 2
Source(s) Dr. Allievi, Customer

Frédéric Rioux, Software Architect

Software Requirement Specification – SOS Roll Simulator

Page 12

ID 7
Name 3D Data Rendering of Ship’s Crossection
Description Displays an animation of the motion of the crossection of

the ship trough the time of the simulation.
Priority 2
Status Coded
Actors Software Developer, GUI Designer, Team Leader
Pre-Conditions The Mathematical Engine must have processed its data.
Inputs Data from the Mathematical Engine
Flow of Events
 Basic Path 1. Mathematical Engine is initialized and launched.

2. Data is obtained and sent for the object to draw an
animation of the crossection in OpenGL.

 Alternative Paths

If there is an error in the Mathematical Engine, then the
process stops after step 1 above

Post-Conditions The system will be ready
Outputs Graphical output
Contraint(s) none
Related Screenshot Screenshot 2, Screenshot 2
Source(s) Dr. Allievi, Customer

ID 7.5
Name Display of Graphs
Description Displays a graph selected by the user in full screen mode.
Priority removed
Status High Level Description
Actors Software Developer, GUI Designer, Team Leader
Pre-Conditions Result plots must be drawn in (5)
Inputs User selection of graph to zoom in.

Data from the Mathematical Engine
Flow of Events
 Basic Path 1. Data is obtained from the Mathematical Engine and the

graph is redrawn on a wider resolution
 Alternative Paths

none

Post-Conditions
Outputs Graphical output
Contraint(s) none
Related Screenshot none
Source(s) Marc-André Laverdière, Technical Writer

Software Requirement Specification – SOS Roll Simulator

Page 13

ID 8
Name Playback Controls
Description Define controls for playback of the animation sequence

yielded by (7).
Playback will highlight the progression of the simulation on
(7), (6), (4) and (3).

Priority 3
Status Coded
Actors Software Developer, GUI Designer, Team Leader
Pre-Conditions Result plots must be drawn in (7)
Inputs User selection of graph to zoom in.

Data from the Mathematical Engine
Flow of Events
 Basic Path 1. User presses the required button generating a replay

2. Data is fetched from the Mathematical Engine
3. (3), (4),(6) are modified to highlight the current position

on the graph.
4. (7) is modified for the current roll angle at the current

time only.
5. Current time, position is incremented and steps 2 to 5

are repeated until the end is reached.
6. The current position markers from (3), (4), (6) are

removed from these graphs.
 Alternative Paths

The user can “pause” the playback, which interrupts
temporarily the sequence above.
The user might stop the playback. If this is the case, the
process returns waiting for step 1 above to become true.

Post-Conditions
Outputs Graphical output
Contraint(s) none
Related Screenshot Screenshot 2
Source(s) Marc-André Laverdière, Technical Writer

Yann McCready, GUI Designer & Software Programmer

Software Requirement Specification – SOS Roll Simulator

Page 14

3.2. External Interface Requirements
This section describes the interface for the SOS Roll Simulation, in terms of
user, hardware, software and communication.

3.2.1. User Interface
The system will be in a single graphical window, developed in order to
facilitate the simulation definition, calculation and plotting.

The upper part of the main window consists of the Parameter
Definition Interface (PDI). The PDI will offer buttons and textboxes to
set parameters, as well as the required buttons to redraw the graphs.

Two plotting areas will occupy the rest of the screen. Each plotting
area will have a series of dropdown lists over it that will allow the user
to select which graph to visualize. The possible visualization will
include the 2D graph of roll angle, 2D graph of roll speed, 2D graph of
roll speed vs. angle, 3D graph and crossection rendering.
Playback buttons, allowing redrawing the animation of the movement,
will be separating the plotting areas. Screenshot 2 shows the basic
layout of the GUI. Screenshot 1 and Screenshot 2 below highlight this
arrangement.

Software Requirement Specification – SOS Roll Simulator

Page 15

Screenshot 1: Graphical User Interface with Angle Vs. Time & 3D Rendering

Software Requirement Specification – SOS Roll Simulator

Page 16

Screenshot 2: 3D & Crossection Rendering, Showing Animation

Software Requirement Specification – SOS Roll Simulator

Page 17

3.2.2. Hardware Interfaces
No Hardware Interfaces will be needed for this project.

3.2.3. Software Interfaces
No Software Interfaces will be implemented for this project.

3.2.4. Communication Interfaces
No Communication Interfaces will be implemented for this project.

3.3. Performance Requirements
The simulator must be able to compute and display the simulation results in
less time than simulation time specified by the user.

3.4. Design Constraints
The design must take in consideration Object-Oriented implementation.

3.5. Logical Database Requirements
No database will be used to implement this simulator.

3.6. Software System Attributes

3.6.1 Reliability
A reliability level of 10-4 will be met.

3.6.2 Availability
Version 1.0 of the system will be available by March 27th 2002 or
sooner. Our development strategies and experience in the fields
related to GUIs allows us to guarantee the basic set of features to be
delivered on time.

3.6.3 Security
No security features will be implemented.

3.6.4 Maintainability
The system’s maintenance will be facilitated by our OOD, which allows
internal code modification transparently.

3.6.5 Transferability/Portability
The system is to be run only on Windows machines supporting MFC
and OpenGL. The minimum system requirements are of a Pentium 200
MHz or better, with at least 128 Mb of RAM, running Windows® 2000®
or better, supporting a screen resolution of 1024 x 768 pixels or
better.

3.6.6 Learnability
The user should be taught the system in less than 15 minutes from an
experienced user. Self-learning the system should take less than 30
minutes hours.

Software Requirement Specification – SOS Roll Simulator

Page 18

3.7. Other Requirements
The development team must provide the customer three prototypes during
the course of the project.

Prototype # Product Version (as per Table 1) Due Date
1 0.1 January 30th, 2002
2 0.2 February 14th, 2002
3 0.3 February 28th, 2002
Final Release 1.0+ March 27th, 2002

Table 9: Release Timeline

Project Management Information – SOS Roll Simulator

Page 19

Part II

SOS Roll Simulator
(Project Management Information)

Project Management Information – SOS Roll Simulator

Page 20

4. Introduction
This part defines the basic project management relevant information on the SOS
Project of Team U1.

5. Time Estimation
The project should be completed in three months on a part-time schedule.

 Task Duration Start Date End Date Cost Time
1 Prototype 1 0 days Wed 30/01/02 Wed 30/01/02 $0.00 0h
2 Prototype 2 0 days Fri 15/02/02 Fri 15/02/02 $0.00 0h
3 Prototype 3 0 days Fri 01/03/02 Fri 01/03/02 $0.00 0h
4 Preliminary

Work
5 days Wed 16/01/02 Sun 20/01/02 $7,392.00 616h

5 Preliminary
Problem Analysis

1 day Wed 16/01/02 Wed 16/01/02 $576.00 48h

6 Determination of
Software Process

2 days Wed 16/01/02 Thu 17/01/02 $1,152.00 96h

7 Preliminary Math
Analysis

3 days Wed 16/01/02 Fri 18/01/02 $1,152.00 96h

8 Determination of
Language used

1 day Wed 16/01/02 Wed 16/01/02 $576.00 48h

9 Formation of Work
Teams

3 days Wed 16/01/02 Fri 18/01/02 $576.00 48h

10 MFC Research 5 days Wed 16/01/02 Sun 20/01/02 $480.00 40h
11 Software

Process
69.1 days Thu 17/01/02 Wed 27/03/02 $17,568.0

0
1,576h

12 Capturing the
Requirements

46 days Thu 17/01/02 Sun 03/03/02 $3,072.00 256h

13 Requirements
Elicitation

3 days Thu 17/01/02 Sat 19/01/02 $768.00 64h

14 Information
gathering on boats

2 days Thu 17/01/02 Fri 18/01/02 $192.00 16h

15 Information
Gathering on
Mathieu Equation

3 days Thu 17/01/02 Sat 19/01/02 $288.00 24h

16 Information
Gathering on Euler
Explicit formula

1 day Thu 17/01/02 Thu 17/01/02 $288.00 24h

17 Requirement
Definition and
Specification
documents

33 days Mon 21/01/02 Fri 22/02/02 $2,112.00 176h

18 IEEE Template
received

1 day Mon 21/01/02 Mon 21/01/02 $0.00 0h

19 Prototype 1 Draft 5 days Thu 24/01/02 Mon 28/01/02 $480.00 40h
20 Revision of Draft 1 1 day Tue 29/01/02 Tue 29/01/02 $96.00 8h
21 Prototype 2 Draft 5 days Thu 31/01/02 Mon 04/02/02 $480.00 40h
22 Revision of Draft 2 2 days Tue 05/02/02 Wed 06/02/02 $192.00 16h

Project Management Information – SOS Roll Simulator

Page 21

23 Prototype 3 Draft 5 days Fri 15/02/02 Tue 19/02/02 $480.00 40h
24 Revision of Draft 3 2 days Wed 20/02/02 Thu 21/02/02 $192.00 16h
25 Final Draft 1 day Fri 22/02/02 Fri 22/02/02 $192.00 16h
26 Requirements

Verification
0.33 days Sat 02/03/02 Sat 02/03/02 $192.00 16h

27 Requirement
Validation

1 day Sun 03/03/02 Sun 03/03/02 $0.00 0h

28 System Design 39 days Thu 17/01/02 Sun 24/02/02 $2,304.00 192h
29 Determination of

Deign Method
1 day Thu 17/01/02 Thu 17/01/02 $96.00 8h

30 Overall
Architecture

4 days Fri 18/01/02 Mon 21/01/02 $384.00 32h

31 Modularization 4 days Sat 19/01/02 Tue 22/01/02 $384.00 32h
32 Communication

methods between
modules

2 days Sun 20/01/02 Mon 21/01/02 $384.00 32h

33 System Design
Approval

1 day Tue 22/01/02 Tue 22/01/02 $96.00 8h

34 System Design
Documentation

10 days Fri 15/02/02 Sun 24/02/02 $960.00 80h

35 Program Design 28 days Wed 23/01/02 Tue 19/02/02 $3,456.00 288h
36 Math Engine

Design
28 days Wed 23/01/02 Tue 19/02/02 $1,248.00 104h

37 Algorithm 1
design

2 days Wed 23/01/02 Thu 24/01/02 $192.00 16h

38 Algorithm 2
design

1 day Thu 24/01/02 Thu 24/01/02 $96.00 8h

39 Algorithm 3
design

5 days Fri 15/02/02 Tue 19/02/02 $960.00 80h

40 GUI Design 7 days Thu 31/01/02 Wed 06/02/02 $768.00 64h
41 Preliminary sketch 2 days Thu 31/01/02 Fri 01/02/02 $192.00 16h
42 User friendliness 3 days Mon 04/02/02 Wed 06/02/02 $576.00 48h
43 Plotting/Renderi

ng design
5 days Thu 31/01/02 Mon 04/02/02 $1,440.00 120h

44 OpenGL research 5 days Thu 31/01/02 Mon 04/02/02 $1,440.00 120h
45 Implementation 56 days Sat 19/01/02 Fri 15/03/02 $5,760.00 480h
46 Object Class

Implementation
2 days Tue 22/01/02 Wed 23/01/02 $192.00 16h

47 Ship Class
Implementation

1 day Tue 22/01/02 Tue 22/01/02 $96.00 8h

48 Boat Class
Implementation

1 day Wed 23/01/02 Wed 23/01/02 $96.00 8h

49 Math Engine
Implementation

31 days Fri 25/01/02 Sun 24/02/02 $1,632.00 136h

50 Algorithm 1
Implementation

5 days Fri 25/01/02 Tue 29/01/02 $480.00 40h

51 Algorithm 2
Implementation

2 days Sat 26/01/02 Sun 27/01/02 $192.00 16h

52 Algorithm 3
Implementation

5 days Wed 20/02/02 Sun 24/02/02 $960.00 80h

53 Plotting/Renderi
ng

16.33
days

Sat 09/02/02 Mon 25/02/02 $1,824.00 152h

Project Management Information – SOS Roll Simulator

Page 22

Implementation

54 3D plot 3.33 days Fri 22/02/02 Mon 25/02/02 $960.00 80h
55 2D projection for

theta
2 days Sat 09/02/02 Sun 10/02/02 $192.00 16h

56 2D projection for
theta prime

2 days Sat 09/02/02 Sun 10/02/02 $192.00 16h

57 Crossection of the
ship

5 days Tue 19/02/02 Sat 23/02/02 $480.00 40h

58 GUI
Implementation

40 days Sat 19/01/02 Wed 27/02/02 $1,248.00 104h

59 Input screen 3 days Sat 19/01/02 Mon 21/01/02 $288.00 24h
60 MFC/OpenGL

integration
3 days Wed 06/02/02 Fri 08/02/02 $288.00 24h

61 Animation 2 days Wed 20/02/02 Thu 21/02/02 $192.00 16h
62 Playback controls 5 days Sat 23/02/02 Wed 27/02/02 $480.00 40h
63 Implementation

Document
3 days Wed 13/03/02 Fri 15/03/02 $864.00 72h

64 Testing the
Program

14 days Wed 30/01/02 Tue 12/02/02 $1,344.00 224h

65 Develop Math test 2 days Wed 30/01/02 Thu 31/01/02 $576.00 48h
66 Test math section 2 days Fri 01/02/02 Sat 02/02/02 $192.00 16h
67 Develop GUI test 2 days Fri 08/02/02 Sat 09/02/02 $384.00 32h
68 Test GUI 2 days Mon 11/02/02 Tue 12/02/02 $192.00 16h
69 Testing the

System
17 days Sat 02/03/02 Mon 18/03/02 $1,344.00 112h

70 Develop module
communication
test

1 day Sat 02/03/02 Sat 02/03/02 $192.00 16h

71 Test module
communication

2 days Fri 08/03/02 Sat 09/03/02 $384.00 32h

72 Test
Documentation

0.8 days Mon 11/03/02 Mon 11/03/02 $384.00 32h

73 Design Inspection 2 days Wed 13/03/02 Thu 14/03/02 $192.00 16h
74 Code Inspection 2 days Sun 17/03/02 Mon 18/03/02 $192.00 16h
75 Delivery and

Maintenance
57.1 days Tue 29/01/02 Wed 27/03/02 $288.00 24h

76 Packaging and
Delivery Proto 1

0.1 days Tue 29/01/02 Tue 29/01/02 $24.00 2h

77 Packaging and
Delivery Proto 2

0.1 days Fri 15/02/02 Fri 15/02/02 $24.00 2h

78 Packaging and
Delivery Proto 3

0.1 days Fri 01/03/02 Fri 01/03/02 $24.00 2h

79 Packaging and
Delivery FINAL

0.1 days Wed 27/03/02 Wed 27/03/02 $24.00 2h

80 Code Maintenance
- Change
Management

3 days Sat 02/03/02 Mon 04/03/02 $288.00 24h

Table 10: Time and Working Cost Analysis

Project Management Information – SOS Roll Simulator

Page 23

6. Cost Estimation
Software Licenses Total Price (Can$)
Microsoft Office 2000
(Academic license)

6 1500

Microsoft Visual Studio 6 5 20000
Microsoft Project 2000 2 1600
Microsoft SourceSafe 6 2 1800
Microsoft Visio 2002 2 650
FTP Server 1 0 (offered by customer)
Adobe Acrobat 5 1 400
Adobe Photoshop 6 1 1000
Bryce 5 1 500
Total 27450

Table 11: Software Costs

Equipment Units Total Price (Can$)
Development Workstation 6 7300
Demonstration Laptops 2 5000
PDAs 4 2000
Internet Connections 3 months 250
Printers 2 1000
Furniture 6 (desk, chairs, lamps, etc.) 5000
Office Supplies various 500
Facilities (4 ½) 3 months 1500
Electricity 3 months 300
Transportation fees 200 km 100
Total 22950

Table 12: Other Costs Estimation

Budget Item Estimation
Software 27450
Equipment & Facilities 22950
Staff 25000
Total 75400

Table 13: Cumulative Cost Estimation

7. Team Members and Assignments
Member Task(s)
François-Michel Brière Team Leader
Negar Family Software Developer
Marc-André Laverdière Technical Writer
Yann McCready GUI Designer, Software Developer
Frédéric Rioux Software Architect, Software Developer
Jia-Wei Zhang Software Developer

Table 14: Team Members & Tasks

Project Management Information – SOS Roll Simulator

Page 24

Resources and Assignments
Frédéric Rioux
 Preliminary Work
 Preliminary Problem Analysis
 Determination of Software Process
 Determination of Language used
 Formation of Work Teams
 Information Gathering on Euleur Explicit formula
 Requirements Verification
 Determination of Deign Method
 Overall Architecture
 Modularization
 Communication methods between modules
 System Design Documentation
 OpenGL research
 Develop GUI test
 Test GUI
 Test module communication
 Test Documentation
 Code Inspection
 Packaging and Delivery Proto 1
 Packaging and Delivery Proto 2
 Packaging and Delivery Proto 3
 Packaging and Delivery FINAL
Yann McCready
 Preliminary Work
 Preliminary Problem Analysis
 Determination of Software Process
 Determination of Language used
 MFC Research
 Information Gathering on Mathieu Equation
 Information Gathering on Euleur Explicit formula
 Requirements Verification
 Communication methods between modules
 User friendliness
 OpenGL research
 3D plot
 Input screen
 MFC/OpenGL integration
 Animation
 Playback controls
 Implementation Document
 Develop module communication test
 Test module communication
 Test Documentation

Project Management Information – SOS Roll Simulator

Page 25

 Design Inspection
Negar Family
 Preliminary Work
 Preliminary Problem Analysis
 Determination of Software Process
 Preliminary Math Analysis
 Determination of Language used
 Requirements Verification
 Algorithm 1 design
 Algorithm 2 design
 Algorithm 3 design
 Algorithm 1 Implementation
 Algorithm 2 Implementation
 Algorithm 3 Implementation
 Implementation Document
 Develop module communication test
 Test Documentation
 Code Maintenance - Change Management
Jia-Wei Zhang
 Preliminary Work
 Preliminary Problem Analysis
 Determination of Software Process
 Preliminary Math Analysis
 Determination of Language used
 Information Gathering on Euleur Explicit formula
 Requirements Verification
 Algorithm 3 design
 Ship Class Implementation
 Boat Class Implementation
 Algorithm 3 Implementation
 3D plot
 Implementation Document
 Develop Math test
 Test math section
 Test Documentation
Francois-Michel Briere
 Preliminary Work
 Preliminary Problem Analysis
 Determination of Software Process
 Preliminary Math Analysis
 Determination of Language used
 Formation of Work Teams
 Information gathering on boats
 Revision of Draft 1
 Revision of Draft 2

Project Management Information – SOS Roll Simulator

Page 26

 Revision of Draft 3
 Final Draft
 Requirements Verification
 System Design Approval
 Preliminary sketch
 User friendliness
 OpenGL research
 3D plot
 2D projection for theta
 2D projection for theta prime
 Crossection of the ship
 Develop Math test
 Develop GUI test
Marc-Andre Laverdière
 Preliminary Work
 Preliminary Problem Analysis
 Determination of Software Process
 Preliminary Math Analysis
 Determination of Language used
 Prototype 1 Draft
 Prototype 2 Draft
 Prototype 3 Draft
 Final Draft
 Requirements Verification
 Develop Math test
 Test Documentation

Table 15: Task Allocation & Follow-Up

Project Management Information – SOS Roll Simulator

Page 27

8. Task Organization – Gant Chart
ID
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

30/01

15/02

01/03

Frederic,Yann,N icky,Jia-wei,Francois-Michel,Marc-Andre

Frederic ,Yann,N icky,Jia-wei,Francois -Michel,Marc-Andre

N icky,Jia-wei,Francois -Michel,Marc-Andre

Frederic,Yann,N icky,Jia-wei,Francois-Michel,Marc-Andre

Frederic ,Francois-Michel

Yann

Francois-Michel

Yann

Frederic ,Yann,Jia-wei

Marc-A ndre

Francois-Michel

Marc-A ndre

Francois-Michel

Marc-A ndre

Francois-Michel

Francois-Michel,Marc-A ndre

Yann,Frederic,N icky,Jia-wei,Francois -Michel,Marc-Andre

Frederic

Frederic

Frederic

Frederic ,Yann

Francois-Michel

Frederic

N icky

N icky

N icky,Jia-wei

Francois-Michel

Yann,Francois-Michel

Yann,Francois-Michel,Frederic

Jia-wei

Jia-wei

N icky

N icky

N icky,Jia-wei

Yann,Jia-wei,Francois-Michel

Francois-Michel

Francois-Michel

Francois-Michel

Yann

Yann

Yann

Yann

N icky,Jia-wei,Yann

Francois-Michel,Marc-A ndre,Jia-wei

Jia-wei

Francois-Michel,Frederic

Frederic

N icky,Yann

Yann,Frederic

Frederic,Yann,Jia-wei,Marc-A ndre,N icky

Yann

Frederic

Frederic

Frederic

Frederic

Freder

N icky

T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T
3 J an '02 20 J an '02 27 J an '02 03 Feb '02 10 Feb '02 17 Feb '02 24 Feb '02 03 Mar '02 10 Mar '02 17 Mar '02 24 Mar '02

Figure 2: Gantt Chart for Tasks

Project Management Information – SOS Roll Simulator

Page 28

2 3

12

15

17 18 19 20 25

26

27

28 29 30

31

32

33

35 36 37

38

39

40 41

42

43 44

45

49 50

51

52

53 54

55

56

57

58 59

22 23 24

34

21

46

1

16

5

48

47

6

9

10

8

1311 14

7

4

51

52

53 54

55

56

57

58 59

60

61

62

67 68

69 70

64 65 66

71

76

77

78

79

75

74

73

72

63

80

Figure 3: Activity Graph

Project Management Information – SOS Roll Simulator

Page 29

9. Development Methodology
The development team will use the Phased Development Strategy with prototyping in
order to develop the software.

An Incremental Strategy will be applied for the development of components in the
GUI and the Iterative approach will be considered for the internal components of the
Mathematical Engine.

Software Specifications Document – SOS Roll Simulator

Page 30

Part III

SOS Roll Simulator
(Software Design Document)

Software Specifications Document – SOS Roll Simulator

Page 31

10. Introduction
This part defines the system design for the SOS project. The system design
document offers a general view of the implementation strategy for the project in
non-technical terms.

The design of the system is based on assumptions by the development team
related to the expected usage of the software.

11. Feature Implementation Concepts

ID 1
Name Mathematical Engine
Description Offers an object-oriented implementation of approximation

algorithms for solving ODE. The Engine stops computing
when the angle reaches θmax.

 Algorithm(s) General Mathematical Remarks
Three different algorithms will be implemented
1. Explicit Euler Scheme

Angle: (1) nnn tθθθ &∆+=+1

Angular Velocity: (2) nnn tθθθ &&&& ∆+=+1

2. Crank-Nicholson Scheme

Angle:)3(
2
1

1
2
11 +

+
+ −∆+=∆+= nnnnnn tt θθθθθθ &&& (3)

We use the following approximation to compute the angle:

1113 +++ +≅∆++=−++=− nnnnnnnnnn θθθθθθθθθθθ &&&&&&&&&&&

Angular Velocity:

)(
2
1

1
2
11 +

+
+ +∆+=∆+= nnnnnn tt θθθθθθ &&&&&&&&& (4)

3. Predictor-Corrector Scheme
This case determines a first value (predictor) that is
adjusted by another calculation (corrector).
Angle:

][
1

11 ∑
=

+−+ ∆+=
M

K
Kn

P
MKn

P
n t θβθθ & (5)

][
0

11 ∑
=

+−+ ∆+=
M

K
Kn

C
MKn

C
n t θβθθ & (6)

Angular Velocity:

][
0

11 ∑
=

+−+ ∆+=
M

K
Kn

C
MKn

C
n t θβθθ &&&& (7)

We use our already defined from the predictor’s angle. 1+nθ
Implementation Detail
4. Explicit Euler Scheme

Initial Data: t∆ , 0θ , , t0θ& 0

Software Specifications Document – SOS Roll Simulator

Page 32

Step 1: find 1θ with equation 1.

Step 2: find with equation 2. Here is its expansion: 1θ&

)))2sin()
.2

(1((00
2
001 θωωθθ t

GM
GMt e

∆
−−∆+= &&

Step 3: Repeat step 1 and 2 to get more points. Here is its
expansion:
Angle:

nnn tθθθ &∆+=+1
Angular Velocity:

)))2sin()
.2

(1((2
01 nnenn t

GM
GMt θωωθθ ∆

−−∆+=+
&&

5. Crank-Nicholson Scheme

Initial Data: t∆ , 0θ , , t0θ& 0

Step 1: find 1θ with equation 1.

Step 2: find with equation 2. Here is its expansion: 1θ&

)))2sin()
.2

(1((00
2
001 θωωθθ t

GM
GMt e

∆
−−∆+= &&

Step 3: find 2θ with equation 3.

Step 4: find with equation 4. Here is its expansion: 2θ&

)]))2sin()
.2

(1((

)))2sin()
.2

(1()[(2/1(

22
2
0

11
2
012

θωω

θωωθθ

t
GM
GM

t
GM
GMt

e

e

∆
−−+

∆
−−∆+= &&

Step 5: repeat step 3 and 4 to get more points. Here is its
expansion:
Angle:

)3(
2
1

11 ++ −∆+= nnnn t θθθθ &&

Angular Velocity:

)]))2sin()
.2

(1((

)))2sin()
.2

(1()[(2/1(

11
2
0

2
01

++

+

∆
−−+

∆
−−∆+=

nne

nnenn

t
GM
GM

t
GM
GMt

θωω

θωωθθ &&

6. Predictor-Corrector Scheme

Initial Data: t∆ , 0θ , , t0θ& 0 and the table 22, 23

Step 1: find with equation 5. Here is its expansion: P
1θ

])1[(001 θθθ &tP ∆+=

Step 2: find with equation 6. Here is its expansion: 1θ&

Software Specifications Document – SOS Roll Simulator

Page 33

)]))2sin()
.2

(1()(2/1(

)))2sin()
.2

(1()(2/1[(

00
2
0

11
2
001

θωω

θωωθθ

t
GM
GM

t
GM
GMt

e

P
e

C

∆
−−+

∆
−−∆+= &&

Step 3: find with equation 7. Here is its expansion: C
1θ

)])(2/1())(2/1[(0101 θθθθ && +∆+= tC

Step 4: find with equation 5. Here is its expansion: P
2θ

])2/1()2/3[(0112 θθθθ && −+∆+= tP

Step 5: find with equation 6. Here is its expansion: 2θ&

)]))2sin()
.2

(1()(12/1(

)))2sin()
.2

(1()(12/8(

)))2sin()
.2

(1()(12/5[(

00
2
0

11
2
0

22
2
012

θωω

θωω

θωωθθ

t
GM
GM

t
GM
GM

t
GM
GMt

e

e

P
e

C

∆
−−−+

∆
−−+

∆
−−∆+= &&

Step 6: find with equation 7. Here is its expansion: C
2θ

)])(12/1())(12/8())(12/5[(01212 θθθθθ &&& −++∆+= tC

Step 7: find with equation 5. Here is its expansion: P
3θ

])12/5()12/16()12/23[(01223 θθθθθ &&& +−+∆+= tP

Step 8: find with equation 6. Here is its expansion: 3θ&

)]))2sin()
.2

(1()(24/1(

)))2sin()
.2

(1()(24/5(

)))2sin()
.2

(1()(24/19(

)))2sin()
.2

(1()(24/9[(

00
2
0

11
2
0

22
2
0

33
2
023

θωω

θωω

θωω

θωωθθ

t
GM
GM

t
GM
GM

t
GM
GM

t
GM
GMt

e

e

e

P
e

C

∆
−−+

∆
−−−+

∆
−−+

∆
−−∆+= &&

Step 9: find with equation 7. Here is its expansion: C
3θ

)])(24/1())(24/5(

))(24/19())(24/9[(

01

2323

θθ

θθθθ
&&

&&

+−+

+∆+= tC

Step 10: find with equation 5. Here is its expansion: P
4θ

])24/9(

)24/37()24/59()24/55[(

0

12334

θ

θθθθθ
&

&&&

−+

+−+∆+= tP

Software Specifications Document – SOS Roll Simulator

Page 34

Step 11: find with equation 6. Here is its expansion: 4θ&

)]))2sin()
.2

(1()(720/19(

)))2sin()
.2

(1()(720/106(

)))2sin()
.2

(1()(720/264(

)))2sin()
.2

(1()(720/646(

)))2sin()
.2

(1()(720/251[(

00
2
0

11
2
0

22
2
0

33
2
0

44
2
034

θωω

θωω

θωω

θωω

θωωθθ

t
GM
GM

t
GM
GM

t
GM
GM

t
GM
GM

t
GM
GMt

e

e

e

e

P
e

C

∆
−−−+

∆
−−+

∆
−−−+

∆
−−+

∆
−−∆+= &&

Step 12: find with equation 7. Here is its expansion: C
4θ

)])(720/19())(720/106())(720/264(

))(720/646())(720/251[(

012

3434

θθθ

θθθθ
&&&

&&

−++−+

+∆+= tC

Step 13: repeat step 10 to 12 to get more points. Here is its
expansion:
Angle Predictor:

])24/9(

)24/37()24/59()24/55[(

3

211

−

−−+

−+

+−+∆+=

n

nnnn
P
n t

θ

θθθθθ
&

&&&

Angular Velocity:

)]))2sin()
.2

(1()(720/19(

)))2sin()
.2

(1()(720/106(

)))2sin()
.2

(1()(720/264(

)))2sin()
.2

(1()(720/646(

)))2sin()
.2

(1()(720/251[(

33
2
0

22
2
0

11
2
0

2
0

11
2
01

−−

−−

−−

+++

∆
−−−+

∆
−−+

∆
−−−+

∆
−−+

∆
−−∆+=

nne

nne

nne

nne

P
nnen

C
n

t
GM
GM

t
GM
GM

t
GM
GM

t
GM
GM

t
GM
GMt

θωω

θωω

θωω

θωω

θωωθθ &&

Angle Corrector:

)])(720/19())(720/106())(720/264(

))(720/646())(720/251[(

321

11

−−−

++

−++−+

+∆+=

nnn

nnn
C
n t

θθθ

θθθθ
&&&

&&

Furthermore, the implementation of the algorithms takes
into account θmax. If any of these values are reached, the
computing is stopped.

 Data Structures List holds the computed values of θ, θ’, t

Software Specifications Document – SOS Roll Simulator

Page 35

Source(s) Dr. Allejandro Allievi, customer

Frédéric Rioux, Software Architect
Jia-We Zhang, Software Developer

ID 3
Name 2D Data Plotting of Roll Angle
Description Displays the graph of the roll angle vs. time.
 Algorithms Computed data from Mathematical Engine is fetched, by

pair of points.
A vertex is drawn between that pair of points such that a
continuous graph results as a 3D plot.
Axes are then drawn and numbered.
The graph is then projected in 2D as to show the 2D Data
Plotting of Roll Angle.

 Data Structures none
Source(s) Frédéric Rioux, Software Architect

ID 4
Name 2D Data Plotting of Roll Speed
Description Displays the graph of the roll speed vs. time.
 Algorithms Computed data from Mathematical Engine is fetched, by

pair of points.
A vertex is drawn between that pair of points such that a
continuous graph results as a 3D plot.
Axes are then drawn and numbered.
The graph is then projected in 2D as to show the 2D Data
Plotting of Roll Speed.

 Data Structures None
Source(s) Frédéric Rioux, Software Architect

Software Specifications Document – SOS Roll Simulator

Page 36

ID 5
Name Integrated Interactive GUI
Description Allows the user to set parameters, run simulations and

visualize results without needing to exit and restart the
program. The main window contains two graphs and the
user can select the type of graph in order to be able to
compare any two types of graph at the same time. Graph
types are: Angle vs. Time, Velocity vs. Time, Velocity vs.
Angle, Ship Crossection, Velocity vs. Angle vs. Time (3D).
The user sees the parameters, the graphs and all the
controls on the same window (for quick access and
convenience).
The main window is divided as described in §3.2.1
This module is also responsible to warn the user of any
error in parameters and/or general errors.

 Algorithm The GUI will validate the user’s data for invalid parameters
at the moment of the data entry and at the computing
request from the user.
A message will then notify the user of incorrect
parameter(s).

 Data Structures none
Source(s) Yann McCready, GUI Designer & Software Programmer

François-Michel Brière, Team Leader

ID 6
Name 3D Data Plotting of Roll Speed and Roll Angle
Description Displays a graph of roll angle • roll speed • time.
 Algorithm Computed data from Mathematical Engine is fetched, by

pair of points.
A vertex is drawn between that pair of points such that a
continuous graph results as a 3D plot.
Axes are then drawn and numbered.
The graph is then projected as to optimize the user’s view.

 Data Structures none
Source(s) Frédéric Rioux, Software Architect

ID 6.5
Name 2D Data Plotting of Comparison
Description Displays the graph of the roll speed vs. roll angle
 Algorithm Computed data from Mathematical Engine is fetched, by

pair of points.
A vertex is drawn between that pair of points such that a
continuous graph results as a 3D plot.
Axes are then drawn and numbered.
The graph is then projected in 2D as to show the 2D Data
Plotting of Comparison.

 Data Structures none
Source(s) Frédéric Rioux, Software Architect

Software Specifications Document – SOS Roll Simulator

Page 37

ID 7
Name 3D Data Rendering of Ship’s Crossection
Description Displays an animation of the motion of the crossection of

the ship trough the time of the simulation.
 Algorithm Display the ship’s crossection and its reference axes.

Data is fetched from the Mathematical Engine and the
viewpoint is rotated based on the angle resulting from the
computation.
At every incrementation in time, update the angle and
display a dot on the other displayed graph, if shown to the
user, highlighting the evolution of the simulation.

 Data Structures Time displayed counter and Drawing flag
Source(s) Yann McCready, GUI Designer & Software Programmer

ID 8
Name Playback Controls
Description Define controls for playback of the animation sequence

yielded by (7).
Playback will highlight the progression of the simulation on
(7), (6), (4) and (3).

 Algorithm The buttons will modify (7) in its data to reflect the effect of
the button pressed.

 Data Structures none
Source(s) Marc-André Laverdière, Technical Writer

Yann McCready, GUI Designer & Software Programmer

12. Conceptual Design
The Ship On Sea (SOS) Roll Motion Simulator is a software program with a user
interface intended to help ship operator and designer analyse the survivability of a
given ship in waves.

 The user can set the attributes of the ship to the desired values using the GUI. He
or she can also modify the environment in which the ship evolves. More precisely,
the following parameters can be modified:

• Ship
≈ Length
≈ Beam
≈ Depth
≈ Draft
≈ Displacement
≈ Height of metacentre
≈ Transverse metacentric height
≈ Fluctuation of the transverse metacentric height due to wave action
≈ Projected Lateral area
≈ Block coefficient
≈ Breadth
≈ Deck area
≈ Length of perpendiculars
≈ Speed

Software Specifications Document – SOS Roll Simulator

Page 38

• Environment
≈ Wave Length
≈ Gravitation

• Simulation

≈ Number of points to be calculated
≈ Time step
≈ Initial roll angle
≈ Initial angular velocity
≈ Algorithm to be used (Explicit Euler, Crank-Nicholson, Predictor-

Corrector)

Using the given data, the software will calculate the roll motion of the ship and the
angular velocity with respect to time using the algorithm the user wants.

For comparison purposes, the user will be able to display two graphs at the time. He
or she will choose any two of the possible graphs to be displayed side by side. The
available graphs are:

• Roll Angle vs. Time
• Angular Velocity vs. Time
• Angular Velocity vs. Roll Angle
• Cross-section of the ship
• 3D Roll Angle vs. Angular Velocity vs. Time

The above graph will offer the possibility of being animated. Play, pause and stop
controls will be provided to the user. The Cross-section graph animation will
represent how the ship moves with time. All other graphs will display a marker
(small sphere) that will move along the graph curve with time. The 3D graph will
have the extra possibility of being rotated around a vertical axis, so that the curve
can be viewed from all angles. A control in the GUI lets the user decide to rotate the
3D graph or to leave it still.

The system will be built to follow the sequence defined in Figure 4.

Software Specifications Document – SOS Roll Simulator

Page 39

Receives
User Data

Start Application

Validates
User Data

Prompt User for
New Data

Fails

Calculate
Simulation Result

Succeed

Display Simulation
Result

Close Application

Cancel Calculation

Wait

User Changes Data

Figure 4: Activity Diagram for System

13. Technical Design
The system will be implemented with low coupling and high cohesion using an
Object-Oriented design. It will be modular and will be easily portable.

From a high-level perspective the system can be viewed as two parts. The first part,
the “core”, is the mathematical engine and the set of classes that are used in the
calculation of the points. The second part is the GUI, which takes the user input and
output the graphs. This interaction and separation is well detailed in Figure 5.

If ever the system is to be ported, only the GUI will have to be written since this
layer is independent from the simulation.

Software Specifications Document – SOS Roll Simulator

Page 40

Figure 5: Sequence Diagram for the System

Software Specifications Document – SOS Roll Simulator

Page 41

13.1. The Core
The core will be independent from the GUI and will offer a complete API. The
core can be further divided into two main parts:

• Mathematical Engine
• Simulation

The mathematical is completely independent of the problem (in our case, the
calculation of the roll angle and the angular velocity of a ship in waves over
time). It will be completely reusable. The Mathematical Engine is in fact an
ODE solver. Currently, three algorithms are supported (Explicit Euler, Crank-
Nicholson, Predictor-Corrector).

The implementation of the Mathematical engine will take the form of the
EquationSolver abstract class and each algorithm will be implemented as a
class derived from EquationSolver.

• EquationSolver

o (inherit) ExplicitEuler
o (inherit) CrankNicolson
o (inherit) PredictorCorrector

The other part of the core, the simulation, will be a class that warps all
information needed to do the calculation and will contain buffers to store the
results of such calculations.

• RollMotionSimulation
o (has a) Ship
o (has a) Environment
o (uses) ExplicitEuler
o (uses) CrankNicolson
o (uses) PredictorCorrector

The architecture of the core can thus be summarized trough an UML Diagram,
as shown in Figure 6.

Software Specifications Document – SOS Roll Simulator

Page 42

Figure 6: UML Diagram for Mathematical Engine

13.2. The GUI

13.2.1 Introduction
The system’s GUI is the agglomeration of two major subparts:
• User Input handling
• Graphical display of results

In order to optimize simplicity and user-friendliness, all
subcomponents will be integrated inside a single window.

The user will input all necessary data for the simulation by changing
the values in text boxes.

Buttons will give the user control of the simulation: Calculate, Close,
About. When the user wants to see the result of the simulation for the

Software Specifications Document – SOS Roll Simulator

Page 43

current entered values, he/she will press the Calculate button and the
results will be plotted on the two graphs. Pressing the About button
will show the splash screen of the program. Pressing the Close button
will close the program instantly. Also, one drop-down list control will
be provided for each graph so that the user can select the graph type
he or she wants in each graph.

13.2.2 Tools
The user input handling part of the program will be implemented using
Microsoft Foundation Classes (MFC). MFC has been selected for our
system based on multiple criteria.

• Object Oriented: MFC offers an object-oriented approach to
the implementation of the GUI, which is a non-functional
requirement of the project.

• Easy integration: MFC components can easily be integrated
with other C++ components of the project, namely the Core
and the Graphs Generator.

• Quality of GUI: MFC facilitates the creation of highly user-
friendly and professional-looking GUIs.

• Experience: The team already has the required knowledge of
this tool and can quickly be fully functional using it.

The graphical display of results will be implemented using OpenGL
inside the MFC window, as to ensure the complete integration of the
graphical output inside the input window. OpenGL has been selected
for our plotting objects for multiple reasons.

• 2D/3D Features: OpenGL allows to easily draw 3D objects, as
well as creating 2D projections, which is perfect for our plotting
needs.

• Animations: OpenGL facilitates the creation of interactive
animations.

• Experience: The team already has the required knowledge of
this tool and can quickly be fully functional using it.

13.2.3 GUI Architecture
Three classes will need to be implemented for the GUI, but the MFC
AppWizard will create most of them. The Class RollSim will be created
as the main application class and the class RollSimDlg will be created
as the main dialog class of our program, both by the AppWizard. The
other important class involved in the GUI will be the GlView class
(derived from CWnd) and it will have to be implemented without the
help of the AppWizard. It will encapsulate all the functionality needed
for the OpenGL graphs in the MFC window. To GlView objects will be
created in the program, one for each graph in the window. The
following is a list of the expected functionality provided by the GlView
class :

• Creation
• Initialization
• Maintaining display settings:

o animated or still graph
o graph type to be drawn

Software Specifications Document – SOS Roll Simulator

Page 44

• Support for animation of graphs
• Plotting of the different graphs:

o Roll Angle vs. Time
o Angular Velocity vs. Time
o Angular Velocity vs. Roll Angle
o Cross-section of the ship
o 3D Roll Angle vs. Angular Velocity vs. Time

• All plots (except cross-section) should have the following
characteristics:

o Scaled to fit sub-window
o Relevant axis names and graph title
o Relevant axis scales and numbering
o Pointer to the current index in buffers (small sphere)
o Pointer moves along curve with time

• Cross-section graph
o Scaled to fit sub-window
o Show proportions of actual ship dimensions
o Show relevant position of Metacenter and Center of

gravity

13.2.4 Error-Handling
In this particular program, almost all input data must be check to
prevent the user from entering data of the wrong type, data that
would make the program crash or data that is impossible for the
problem. MFC automatically takes care of the type of data entered.
For example, it will prompt the user to enter an integer value (by
means of a message box) if he or she tries to enter characters in an
integer edit box.

Program crashes caused by impossible data, such as division by zero,
will be redundantly prevented at the core level for extra safety, but the
GUI will also check input data and provide the user with relevant error
messages or warnings. Impossible input values, such as a negative
length of ship, will be prevented by the GUI; even tough they do not
pose any stability threat.

Screenshot 3: Example Error Warning

Software Specifications Document – SOS Roll Simulator

Page 45

Part IV

SOS Roll Simulator
(Implementation Guide)

Software Specifications Document – SOS Roll Simulator

Page 46

14. Introduction
The purpose of this section of the document is to introduce the reader to the
specifics of the program’s programming.

15. Programming Style

15.1. Hungarian Notation
In order to facilitate the identification of variable types in our code, the
Hungarian notation has been adopted.

This notation was introduced at Microsoft during the development of OS/2. It
is called "Hungarian" since its inventor, Charles Simonyi, is Hungarian.
Hungarian variable names start with a small number of lower case letters that
identify the type of the variable. These letters are followed by a descriptive
variable name that starts with an upper case letter, as illustrated in Table 16.

Prefix Type Example
b boolean bool bStillGoing
c character char cLetterGrade
str C++ string string strFirstName
si short integer short siChairs
i integer int iCars
li long integer long liStars
d double double dMiles
ld long double long double ldLightYears
if input file stream ifstream ifNameFile
is input stream void fct(istream &isIn)
of output file stream ofstream ofNameFile
os output stream void fct(ostream &osIn)
C declaring a class class CPerson

Table 16: Hungarian Notation Prefixes

15.2. Code File Headers
With the intention of identifying the code easily and effectively, file headers
such as the following are used at the beginning of each code-containing file.
The header conveys information such as the project name, the author name,
the filename, the date on which the code implementation was started and a
short description of the code.

Software Specifications Document – SOS Roll Simulator

Page 47

//--
// S O E N 3 4 1 , S e c t i o n U , 2 0 0 2
//--
//
// P R O J E C T:
// Roll Motion of a Ship in Wave Simulator
//
//--
//
// Author: Team U1
// Date: January 22, 2002
// File: CRollMotionSimulation.cpp
// Description: Implementation of the CRollMotionSimulation class
//
//--

Figure 7: Example of File Header

15.3. Function Headers
With the aim of identifying the purpose and data flow in and out of each
function, headers such as the following precede each implementation. They
state the function name, its actions, input parameter types and outputs.

//--
//function: CRollMotionSimulation
//action: class constructor, initializes all data members
//input: CShip, CEnvironment, int, double, double, double
//output: none
//--

Figure 8: Example of Function Header

15.4. Comments
In order to facilitate understanding, communication, maintenance and
troubleshooting comments are embedded within each code file so as to explain the
actions performed to anyone reading the code.

Software Specifications Document – SOS Roll Simulator

Page 48

16. Algorithm Implementation

16.1. General Considerations

16.1.1 Data Storage
The data is held by three buffers, implemented as dynamic arrays,
storing calculation results for various time, roll angle and angular roll
velocity values. The first cell of the arrays stores the initial value for
the time, roll angle and angular roll velocity supplied by the user.

16.1.2 Initialization
Data members for the maximum roll angle and angular velocity are
initialized to the corresponding initial values, as supplied by the user.

16.1.3 Computing Interval
During the computing of values, if the calculated roll angle is greater
than 90° (θmax: passed this angle, the ship necessarily capsizes), the
computing process stops. Otherwise, the computing process until the
user-set number of points has been calculated. Comparison
statements integrated in the algorithms’ solving will update the
maximum angle and velocity values if ever necessary.

16.1.4 Buffer Adjustment
At the end of each algorithm, the actual number of points used for
plotting graphs is adjusted. For instance, the points for which the roll
angle is greater than 90 degrees are discarded.

16.2. Specifics for Implementation of Explicit Euler Scheme
A loop structure (for loop) is used to calculate and store in appropriate buffers
the values for the next time, roll angle and angular roll velocity.

16.3. Specifics for Implementation of Crank-Nicholson Scheme
As this algorithm requires the two previous values of roll angle in order to
calculate the next one, Algorithm 1 (Explicit Euler Scheme) is used to
calculate the second roll angle and angular roll velocity values stored in the
result buffers.

A “for loop” is used to calculate and store in appropriate buffers the values for
the next time, roll angle and angular roll velocity.

16.4. Specifics for Implementation of Predictor-Corrector Scheme
This algorithm uses the predictor-corrector scheme for calculating the roll
angle and angular roll velocity. The predictor and corrector constants are
stored in static arrays that simulate the tables. The predictor scheme is first
used to calculate the predicted roll angle. Then the corrected value of the
angular roll velocity is calculated and combined with the predicted roll angle
to calculate the next corrected roll angle. A for loop is used to calculate and
store in appropriate buffers the values for the next time, roll angle and
angular roll velocity.

Software Specifications Document – SOS Roll Simulator

Page 49

Part V

SOS Roll Simulator
(Testing)

Software Specifications Document – SOS Roll Simulator

Page 50

17. Introduction
This section of the document details the strategy used by the test team in order to
ensure the highest level of reliability possible. The phases of the process are
detailed using a high-level view, demonstrating the solidity of the testing strategy.

18. Cross-Review
The cross-review exercise is a known way to facilitate and accelerate the testing
phase of the software development.
The code is reviewed by a programmer who hasn’t contributed to the development of
the reviewed module.
The reviewer compares the code with what was specified in the module’s
documentation and ensures the validity of the code.

If any mismatch is detected at this step, it is reported to the Team Leader, who will
emit a ruling on the cause of the error and will assign personnel to correct the error.

19. Mathematical Engine Unit Test

19.1. Test Plan
The Mathematical Engine is composed of a few objects (Ship, Environment,
Solver) embedded into a Simulation.

The plan is to ensure that the objects are able to react correctly when
provided incorrect parameters, as well as ensuring the correctness of the
Solvers.

19.2. Test Specification

19.2.1 Criteria
An object is considered correctly failsafed when no set accepted
incorrect parameters.
The solver is considered correct if the error of each computed value is
under 1x10-5 from a trusted model (in our case, the Excel Prototype),
without any memory leaks.
We assume that previous file tests by the developers appropriately
verified the internal functioning of the parts of the mathematical
engine.

19.2.2 Seeding
Six seeds were be implemented in this module

1) Replaced a ‘-‘ by a ‘/’ for the implementation of the Explicit

Euler Solver.
2) Replaced a ‘+’ by a ‘-‘ for the implementation of the Crank

Nicholson Solver.
3) Inserted an incorrect Predictor constant in the Predictor Table

of the Predictor-Corrector Solver.
4) Leaved a critical assertion for error checking.

Software Specifications Document – SOS Roll Simulator

Page 51

5) Removed error checking on the Length parameter in class

CShip.
6) Performed an invalid static casting from double to integer in the

parameter setting of the gravitation.

19.2.3 Protocol
The test plan will be in two phases:
a) Parameter control validation
b) Solver validation

For the parameter control validation, we built a simple driver
program creating each object and trying to set invalid values. The
desired parameters are compared with those inside the object. If the
bad parameter(s) is rejected, then the test is successful. We will have
five different incorrect values for each parameter.

The solver validation consists of similar driver programs: one inside
our Excel model and one inside our Core. Each driver will generate files
of the same format with the computation results of their engine, with a
precision of 1x10-8.

A separate utility will then compare the result files for the same
parameter set and verify that the results are under the acceptable
error define above.

“For loops” are nested so that each parameter’s options will be tested
with all the combination of the other parameters. Each parameter has
been tested with two valid values, and the process has been repeated
for each solver, for a total of 25 165 824 tests. The rapidity of the
computation combined with the automation of the process ensures
that this amount of test can be run efficiently. A first run of 30 tests of
each solver will first be done, so as to optimize the bug detection level.

The module has been submitted to an endurance/test testing, being
run non-stop for 12 hours. During this period, the software calculated
extremely large simulations without any stability issue.

19.3. Test Results
All seeds were discovered. All results from the comparison match. This implies
that either both models are defective in a similar manner (highly improbable)
or that we have correct results since our data was also checked against
theoretical results.

20. GUI Unit Test

20.1. Test Plan
Since our GUI is composed of two components, we must test these two
components separately.
The plan is to ensure that appropriate parameter checking is performed, as
well as the response to the user is appropriate and useful.
This test will also ensure that the graphing objects render the results
correctly.

Software Specifications Document – SOS Roll Simulator

Page 52

20.2. Test Specification

20.2.1 Criteria
The GUI is considered satisfactory when a useful error message pops
up for every invalid operation we are performing on it.

The rendering objects are to be considered satisfactory when the
image displayed matches the Excel Prototype.

We assume that the developer of the MFC GUI has performed a
minimal test of conformity on his code.

We also assume that the developer of the rendering objects has tested
for conformity between the rendering, so that the 2D/3D renders
match each other and that the crossection display is conform to the
displayed graphs.

20.2.2 Seeding
Four seeds were be implemented

1) The Z-axis of the graphs was inversed, so that the negative Z
have an axis, but not the positive Z values.

2) The rendering object was to voluntarily skip a random number
of points, ‘approximating’ the results.

3) The error message for invalid ship parameter combination was
left blank.

4) The dropboxes were made to display an incorrect rendering
object (i.e. swap the crossection rendering with the 2D angle
Vs. time plot).

20.2.3 Protocol
The testing of the Data Entry is done manually, using a checklist of
bad parameter combination and incorrect parameters.

The testing of the rendering objects uses 30 output files from the Core
Testing done earlier, and comparing the render with the one displayed
in Excel. The results should be visually identical.

20.3. Test Results
All four seeds were detected. All error messages are functional. All renders
match the result from the Excel prototype.

Software Specifications Document – SOS Roll Simulator

Page 53

21. System Test

21.1. Test Plan
The integrated system is user-input-based, which means that the only part of
testing left to ensure is that the system reacts correctly to the user’s input.

21.2. Test Specification

21.2.1 Criteria
This test will be considered successful when all tested sequences will
have yielded the expected output, whether the parameters are
adequate or not.

21.2.2 Seeding
Since the integration requires no untested elements, no seeding is
added.

21.2.3 Protocol

We use a Markhov model (as detailed in Figure 9 and Table 17) with
what we believe is a plausible usage profile in order to determine
sequences of clicks, and ensure correctness for them.
We use a random generator on the model and generate 30 sequences
of clicks (of a maximum of 6 clicks per sequence), as well as adding
the 10 most important sequences.

We then perform these sequences twice: once with correct
parameters, the other with at least one incorrect parameter.
The sequences are performed sequentially, that is: we do not but the
system in its initial mode between each sequence.

Figure 9: Simplified Markhov Model

Software Specifications Document – SOS Roll Simulator

Page 54

Markhov Model of Usage and Stages (Probability of transfer)

From / To Start
Ship

Parameter
Environment
Parameter

Simulation
Parameter

Calculate
Change
Render

Animate
Close

program
Start - 35 10 20 30 2 2.9 0.1
Ship

Parameter
- 9.5 5 5 80 0.2 0.2 0.1

Environment
Parameter

- 5 5 9.5 80 0.2 0.2 0.1

Simulation
Parameter

- 5 9.5 5 80 0.2 0.2 0.1

Calculate - 14.5 15 15 0.4 30 25 0.1
Change
Render

- 15 15 25 0.9 10 34 0.1

Animate - 15 15 15 0.4 40 14.5 0.1
Close

program
- - - - - - - -

Table 17: State Change Probabilities of Markhov Model

21.3. Test Results
The system response to the sequences was conforming to expectation for all
40 sequences in both cases of correct and incorrect parameters supplied.

Software Specifications Document – SOS Roll Simulator

Page 55

Part VI

SOS Roll Simulator
(Validation)

Software Specifications Document – SOS Roll Simulator

Page 56

22. Introduction
The validation is the end of the development process for the development
team. It allows the validation of the correctness of the implementation and
the consistency with system requirements.

23. Validation Chart

ID Function Description Implemented?

1
Mathematical
Engine

Offers an object-oriented implementation of
approximation algorithms for solving ODE. The
Engine stops computing when the angle reaches
θmax.

2 Data Bridge Offers a gateway for the data to be passed from the

Mathematical Engine components of the system. Removed

3
2D Data Plotting
of Roll Angle

Displays the graph of the roll angle vs. time.

4
2D Data Plotting
of Roll Speed

Displays the graph of the roll speed vs. time.

5
Integrated
Interactive GUI

Allows setting of parameters, run simulations and
visualize results without restarting the program.
The main window is divided as described in
§3.2.1
This module is also responsible to warn the user
of any error in parameters and/or general errors.

6
3D Data Plotting
of Roll Speed
and Roll Angle

Displays a graph of roll angle • roll speed • time.

6.5
2D Data Plotting
of Comparison

Displays the graph of the roll speed vs. roll angle

7
3D Data Plotting
of Ship’s
Crossection

Displays an animation of the motion of the
crossection of the ship trough the time of the
simulation.

7.5
Display of
Graphs

Displays a graph selected by the user in full
screen mode.

Removed

8
Playback
Controls

Define controls for playback of the animation
sequence yielded by (7).
Playback will highlight the progression of the
simulation on (7), (6), (4) and (3).

9 Data Files
Allows the user to load/save data files holding
simulation, ship and environment parameters.

To be
implemented

10 Image Files
Allows the user to save the graphical plotting of
(3), (4) and (6) into an image file.

To be
implemented

11
Advanced Plot
Manipulation

Allows the user to rotate and zoom the desired
plot for better analysis

To be
implemented

Table 18: Validation Chart

Appendixes – SOS Roll Simulator

Page 57

Part VII

SOS Roll Simulator
(Maintenance Recommendations)

Appendixes – SOS Roll Simulator

Page 58

24. Introduction

This section of the document details the suggested improvements that one
could implement in further releases of the software. In addition, a change
management process is suggested and could be followed by the maintainers.

25. Maintenance Recommendations
The following functions could be implemented:

ID 9
Name Data Files
Description Allows the user to load/save data files holding simulation,

ship and environment parameters.
 Algorithm The data would be saved in a designated text file type.

The user, trough the GUI, will be able to specify the location
of the files.
Saving
The object would use standard file streams to write the
contents of the parameter object to a file according to the
file format specification.
Loading
Use standard file stream procedures to read and analyze
the files line by line.
Any violation in the file format will be considered as a
corrupted file.

 Data Structures Object of related class
Source(s) Marc-André Laverdière, Technical Writer

ID 10
Name Image Files
Description Allows the user to save the graphical plotting of (3), (4) and

(6) into an image file.
 Algorithm The image map of the graph(s) would be extracted and the

PNG image algorithm would then be applied to it.
The data would then be written as a file.
The location of the file will be set by the user trough the
GUI.

 Data Structures
Source(s) Marc-André Laverdière, Technical Writer

ID 11
Name Advanced Plot Manipulation
Description Allows the user to rotate and zoom the desired plot for

better analysis.
 Algorithm Mouse clicks on the plotting areas are detected trough the

GUI tools and the plot is then rotated accordingly.
 Data Structures none
Source(s) Marc-André Laverdière, Technical Writer

Table 19: Suggested Function Addition

Appendixes – SOS Roll Simulator

Page 59

ID 9
Name Data Files
Description Allows the user to load/save data files holding simulation,

ship and environment parameters.
 Algorithm The data would be saved in a designated text file type.

The user, trough the GUI, will be able to specify the location
of the files.
Saving
The object would use standard file streams to write the
contents of the parameter object to a file according to the
file format specification.
Loading
Use standard file stream procedures to read and analyze
the files line by line.
Any violation in the file format will be considered as a
corrupted file.

 Data Structures Object of related class
Source(s) Marc-André Laverdière, Technical Writer

ID 10
Name Image Files
Description Allows the user to save the graphical plotting of (3), (4) and

(6) into an image file.
 Algorithm The image map of the graph(s) would be extracted and the

PNG image algorithm would then be applied to it.
The data would then be written as a file.
The location of the file will be set by the user trough the
GUI.

 Data Structures
Source(s) Marc-André Laverdière, Technical Writer

ID 11
Name Advanced Plot Manipulation
Description Allows the user to rotate and zoom the desired plot for

better analysis.
 Algorithm Mouse clicks on the plotting areas are detected trough the

GUI tools and the plot is then rotated accordingly.
 Data Structures none
Source(s) Marc-André Laverdière, Technical Writer

Table 20: High-Level Design for Supplemental Functions

26. Change Management Process

The change management process proposed here is inspired by the NEMMCO’s
IT Change Management Procedures Version 6.0. It is basically constituted of
four (4) basic steps:

Appendixes – SOS Roll Simulator

Page 60

Change Initiation: this step initiating and logging of the change
request.
Change Assessment: this sub-process assesses the business and
technical issues.
Change Authorization: this steps deals with authorization for the
change to be progressed or the rejection of the change. Authorized
changes are allocated to a particular release as part of this step.
Change Implementation: this steps plans, schedules and
implements the changes to the said software.

26.1 Change Initiation
The Change Management Process is triggered by the identification of a
need to improve the current software. Anyone in the team may
initiate a change, including the customer. Once a requirement for
change is identified, a Change Request is registered in the Change
Request Form. Once the requester completes that form, it is given to
the team leader so that it can be handed in to the appropriate person
(i.e. GUI changes request to GUI people)

26.2 Change Assessment
The concerned team member(s) will performs a preliminary evaluation
of the request to confirm the relevance of it. To do so, he/she will
determine whether this change is within the scope of the system
he/she is responsible for. This step serves two purposes, first that we
don’t loose time implementing extra features not asked for by the
customer and second, that the Change Request was given to the
appropriate team member.

Then, if the change is relevant, it is evaluated from strictly utilitarian
viewpoint: that is how much money is the company going to loose if it
doesn’t implement that change.

Finally, the concerned team member must as well as determine the
technical feasibility, risk and effect of the change within the overall
software product.

A Change Assessment Form will be forwarded to the team leader for
registration of the change and its further progression. This form will
include all the assessments done by the concerned team member.

Appendixes – SOS Roll Simulator

Page 61

26.3 Change Authorization
The main concern of the Change Authorization is to give the final seal
of approval on the Change assessment form. Judging by the evaluation
the change in terms of cost, benefit and risk to the operation, it will
authorize or reject the change to be developed.

Authorization by the Team Leader is always required for the change to
progress. Then the Team Leader will notify affected team members of
the outcome (including rejection of changes) of the authorization
process.

The result will be a signed Change Assessment Form meaning that the
change can be progressed, or if there is no signature that the change
is rejected.

26.4 Change Implementation
This step takes care of designing, developing and testing the change.
The objective here is to perform and monitor all relevant actions. We
therefore ensure that the implementation of the proposed change is
“free” of defect (thus not inserting new defect in software).

The concerned team member(s) will be verifying that all tests have
been completed successfully.

In addition the programmers that will outline the action taken to
implement the change will fill out a Change Implementation Form.

We should also inform the change requestor on the progress of the
change implementation.

One of the more critical elements of the Change Management Process
is keeping all team members advised of the status of the change. The
team leader will be responsible for these notifications.

The final step is the Change Completion. Its purpose is to evaluate the
completion status of the change and close the change record. The
objective is to verify that the change was implemented in accordance
with the specified change plan and that the desired output of the
change was achieved.

The documents produced during the change completion will be the
Closed Change Record.

Appendixes – SOS Roll Simulator

Page 62

Part VII

SOS Roll Simulator
(Appendixes)

Appendixes – SOS Roll Simulator

Page 63

27. Variables
Variable Determination
T User-Defined
∆t User-Defined
θ Computed from Simulation
θ’ Computed from Simulation
θ’’ Roll Acceleration
θ0 User-Defined
θ0’ User-Defined
θ0’’ User-Defined
ωw Computed from Parameters
ωe Computed from Parameters
R Computed from Parameters
B Computed from Parameters
Ixx Computed from Parameters
kxx Computed from Parameters
L User-Defined
B (β) User-Defined
D User-Defined
T User-Defined
KM User-Defined
GM User-Defined
∆GM User-Defined
W User-Defined
V User-Defined
C0 User-Defined
Cu User-Defined
Ad User-Defined
He User-Defined
LBP User-Defined
G User-Defined
θmax User-Defined

Table 21: Variables and Source

28. Values for Predictor-Corrector Scheme
B (P) K=1 K=2 K=3 K=4 Error

B (P) 1K 1 - - - ½ h 2 F i
B (P) 2K 3/2 -1/2 - - 5/12 h 3 F ii
B (P) 3K 23/12 -16/12 5/12 - 3/8 h 4 F iii
B (P) 4K 55/24 -59/24 37/24 -9/24 251/12 h 5 F iv

Table 22: Predictor Stage Coefficients and Error

B (C) K=0 K=1 K=2 K=3 K=4
B (C) 1K 1/2 ½ - - -
B (C) 2K 5/12 8/12 -1/12 - -
B (C) 3K 9/24 19/24 -5/24 1/24 -
B (C) 4K 251/720 646/720 -264/720 106/720 -19/720

Table 23: Corrector Stage Coefficients

	Table of Contents
	Table of Tables
	Table of Screenshots
	
	
	
	
	
	Part I

	SOS Roll Simulator

	Introduction
	Purpose
	Scope
	Definitions, Acronyms and Abbreviations
	Definitions
	Acronyms

	References

	Overall Description
	Product Perspective
	Product Functions
	Actor Characteristics
	Constraints
	Assumptions and Dependencies

	Specific Requirements
	Functional Requirements
	
	ID
	1
	Name
	Description
	Related Screenshot
	Source(s)
	ID
	2
	Name
	Description
	
	Removed

	Related Screenshot
	Source(s)
	ID
	3
	Name
	Description
	Related Screenshot
	Source(s)
	ID
	4
	Name
	Description
	Related Screenshot
	Source(s)
	ID
	5
	Name
	Description
	Related Screenshot
	Source(s)
	ID
	6
	Name
	Description
	Related Screenshot
	Source(s)
	ID
	6.5
	Name
	Description
	Related Screenshot
	Source(s)
	ID
	7
	Name
	Description
	Related Screenshot
	Source(s)
	ID
	7.5
	Name
	Description
	Related Screenshot
	Source(s)
	ID
	8
	Name
	Description
	Related Screenshot
	Source(s)

	External Interface Requirements
	User Interface
	Hardware Interfaces
	Software Interfaces
	Communication Interfaces

	Performance Requirements
	Design Constraints
	Logical Database Requirements
	Software System Attributes
	Reliability
	Availability
	Security
	Maintainability
	Transferability/Portability
	Learnability

	Other Requirements
	
	
	
	
	
	Part II

	SOS Roll Simulator

	Introduction
	Time Estimation
	Cost Estimation
	
	
	Units

	Team Members and Assignments
	Task Organization – Gant Chart
	Development Methodology
	
	
	
	
	
	Part III

	SOS Roll Simulator

	Introduction
	Feature Implementation Concepts
	
	
	ID
	1
	Name
	Description
	General Mathematical Remarks
	Implementation Detail
	Source(s)
	ID
	3
	Name
	Description
	Source(s)
	ID
	4
	Name
	Description
	Source(s)
	ID
	5
	Name
	Description
	Source(s)
	ID
	6
	Name
	Description
	Source(s)
	ID
	6.5
	Name
	Description
	Source(s)
	ID
	7
	Name
	Description
	Source(s)
	ID
	8
	Name
	Description
	Source(s)

	Conceptual Design
	Technical Design
	The Core
	The GUI
	Introduction
	Tools
	GUI Architecture
	Error-Handling
	
	
	
	Part IV

	SOS Roll Simulator

	Introduction
	Programming Style
	Hungarian Notation
	
	Example

	Code File Headers
	Function Headers
	Comments

	Algorithm Implementation
	General Considerations
	Data Storage
	Initialization
	Computing Interval
	Buffer Adjustment

	Specifics for Implementation of Explicit Euler Scheme
	Specifics for Implementation of Crank-Nicholson Scheme
	Specifics for Implementation of Predictor-Corrector Scheme
	
	
	
	
	Part V

	SOS Roll Simulator

	Introduction
	Cross-Review
	Mathematical Engine Unit Test
	Test Plan
	Test Specification
	Criteria
	Seeding
	Protocol

	Test Results

	GUI Unit Test
	Test Plan
	Test Specification
	Criteria
	Seeding
	Protocol

	Test Results

	System Test
	Test Plan
	Test Specification
	Criteria
	Seeding
	Protocol

	Test Results
	
	
	
	
	Part VI

	SOS Roll Simulator

	Introduction
	Validation Chart
	
	
	
	
	
	Part VII

	SOS Roll Simulator

	Introduction
	Maintenance Recommendations
	
	
	ID
	9
	Name
	Description
	Saving
	Loading
	Source(s)
	ID
	10
	Name
	Description
	Source(s)
	ID
	11
	Name
	Description
	Source(s)
	ID
	9
	Name
	Description
	Saving
	Loading
	Source(s)
	ID
	10
	Name
	Description
	Source(s)
	ID
	11
	Name
	Description
	Source(s)

	Change Management Process
	Change Initiation
	Change Assessment
	Change Authorization
	Change Implementation
	
	
	
	
	Part VII

	SOS Roll Simulator

	Variables
	
	
	
	Variable

	Values for Predictor-Corrector Scheme

